Chromosome Research

, 19:825 | Cite as

The effects of rapid desiccation on estimates of plant genome size

  • Jillian D. Bainard
  • Brian C. Husband
  • Sarah J. Baldwin
  • Aron J. Fazekas
  • T. Ryan Gregory
  • Steven G. Newmaster
  • Paul Kron
Article

Abstract

Flow cytometry has become the dominant method for estimating nuclear DNA content in plants, either for ploidy determination or quantification of absolute genome size. Current best practices for flow cytometry involve the analysis of fresh tissue, however, this imposes significant limitations on the geographic scope and taxonomic diversity of plants that can be included in large-scale genome size studies. Dried tissue has been used increasingly in recent years, but largely in the context of ploidy analysis. Here we test rapid tissue drying with silica gel as a method for use in genome size studies, potentially enabling broader geographic sampling of plants when fresh tissue collection is not feasible. Our results indicate that rapid drying introduces comparatively minor error (<10%), which is similar to the error introduced by other common methodological variations such as instrument. Additionally, the relative effect of drying on genome size and data quality varied between species and buffers. Tissue desiccation provides a promising approach for expanding our knowledge of plant genome size diversity.

Keywords

DNA content dried tissue flow cytometry polyploidy silica gel 

Abbreviations

CV

Coefficient of variation

PI

Propidium iodide

Notes

Acknowledgments

This study represented a collaborative project involving three research groups and was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) grants to BCH, TRG, and SGN and used equipment provided through the Canada Foundation for Innovation (CFI) and the Ontario Research Fund (ORF). Additional support was provided to BCH through a Canada Research Chair and to JDB by an NSERC postgraduate scholarship. We sincerely thank P. Šmarda and J. Suda for providing constructive feedback on the manuscript. We wish to thank several other lab members for assisting with flow cytometric analysis, including Anastasia Richardson, Kelly Hadfield, Nicholas Jeffery, João Lima, Paula Nathwani, and Paola Pierossi. We also thank Hana Serajaddini, Lindsay Wilson, Benjamin Yim, and Thomas Henry for lab and field assistance.

Supplementary material

10577_2011_9232_MOESM1_ESM.docx (22 kb)
(DOCX 21.8 kb)

References

  1. Arumuganathan K, Earle ED (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:229–233CrossRefGoogle Scholar
  2. Bainard JD, Fazekas AJF, Newmaster SG (2010) Methodology significantly affects genome size estimates: quantitative evidence using bryophytes. Cytom Part A 77A:725–732CrossRefGoogle Scholar
  3. Balao F, Casimiro-Soriguer R, Talavera M, Herrera J, Talavera S (2009) Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations. Ann Bot London 105:965–973CrossRefGoogle Scholar
  4. Baranyi M, Greilhuber J (1999) Genome size in Allium: in quest of reproducible data. Ann Bot London 83:687–695CrossRefGoogle Scholar
  5. Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot London 76:113–176CrossRefGoogle Scholar
  6. Bennett MD, Leitch IJ (2005a) Genome size evolution in plants. In: Gregory TR (ed) Evolution of the genome. Elsevier, San Diego, pp 89–162CrossRefGoogle Scholar
  7. Bennett MD, Leitch IJ (2005b) Plant genome size research: a field in focus. Ann Bot London 95:1–6CrossRefGoogle Scholar
  8. Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos T R Soc B 274:227–274CrossRefGoogle Scholar
  9. Chase MW, Hills HH (1991) Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40:215–220CrossRefGoogle Scholar
  10. Cires E, Cuesta C, Peredo EL, Revilla MA, Prieto JAF (2009) Genome size variation and morphological differentiation within Ranunculus parnassifolius group (Ranunculaceae) from calcareous screes in the northwest of Spain. Plant Syst Evol 281:193–208CrossRefGoogle Scholar
  11. Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106PubMedCrossRefGoogle Scholar
  12. Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plantarum 31:113–120CrossRefGoogle Scholar
  13. Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow-cytometric estimation of nuclear DNA content in plants. Physiol Plantarum 85:625–631CrossRefGoogle Scholar
  14. Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot London 82(Suppl A):17–26CrossRefGoogle Scholar
  15. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244PubMedCrossRefGoogle Scholar
  16. Dušková E, Kolář F, Sklenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K (2010) Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82:127–148Google Scholar
  17. Eidesen PB, Alsos IG, Popp M, Stensrud Ø, Suda J, Brochmann C (2007) Nuclear vs. plastid data: complex Pleistocene history of a circumpolar key species. Mol Ecol 16:3902–3925PubMedCrossRefGoogle Scholar
  18. Galbraith DW, Harkings KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051PubMedCrossRefGoogle Scholar
  19. Glawe GA, de Jong TJ (2009) Complex sex determination in the stinging nettle Urtica dioica. Evol Ecol 23:635–649CrossRefGoogle Scholar
  20. Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot London 82(Suppl A):27–35CrossRefGoogle Scholar
  21. Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot London 95:91–98CrossRefGoogle Scholar
  22. Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH Verlag, Weinheim, pp 67–101Google Scholar
  23. Harbaugh DT (2008) Polyploid and hybrid origins of Pacific island sandalwoods (Santalum, Santalaceae) inferred from low-copy nuclear and flow cytometry data. Int J Plant Sci 169:677–685CrossRefGoogle Scholar
  24. Hersch-Green EI, Cronn R (2009) Tangled trios?: characterizing a hybrid zone in Castilleja (Orobanchaceae). Am J Bot 96:1519–1531PubMedCrossRefGoogle Scholar
  25. Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. AREES 38:847–876Google Scholar
  26. Kruskal JB (1964) Non-metric multidimensional scaling: a numerical method. Psychometrika 29:115–129CrossRefGoogle Scholar
  27. Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH Verlag, Weinheim, pp 153–176Google Scholar
  28. Little DP, Moran RC, Brenner ED, Stevenson DW (2007) Nuclear genome size in Selaginella. Genome 50:351–356PubMedCrossRefGoogle Scholar
  29. Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot London 98:515–527CrossRefGoogle Scholar
  30. Loureiro J, Suda J, Doležel J, Santos C (2007) Flower: a plant DNA flow cytometry database. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH Verlag, Weinheim, pp 423–438CrossRefGoogle Scholar
  31. McCune B, Mefford MJ (1997) PC-ORD. Multivariate analysis of ecological data (version 3.20). MjM Software Design, Gleneden Beach, OR, USAGoogle Scholar
  32. Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89–107CrossRefGoogle Scholar
  33. Popp M, Gizaw A, Nemomissa S, Suda J, Brochmann C (2008) Colonization and diversification in the African ‘sky islands’ by Eurasian Lychnis L. (Caryophyllaceae). J Biogeogr 35:1016–1029CrossRefGoogle Scholar
  34. Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot London 86:929–934CrossRefGoogle Scholar
  35. Richards AJ (1985) Sectional nomenclature in Taraxacum (Asteraceae). Taxon 34:633–644CrossRefGoogle Scholar
  36. Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phyl Evol 42:92–103CrossRefGoogle Scholar
  37. Šmarda P (2006) DNA ploidy levels and intraspecific DNA content variability in Romanian fescues (Festuca, Poaceae) measured in fresh and herbarium material. Folia Geobot 41:417–432CrossRefGoogle Scholar
  38. Šmarda P, Bureš P (2010) Understanding intraspecific variation in genome size in plants. Preslia 82:41–61Google Scholar
  39. Šmarda P, Stančík D (2006) Ploidy level variability in South American fescues (Festuca L., Poaceae): use of flow cytometry in up to 5½-year-old caryopses and herbarium specimens. Plant Biol 8:73–80PubMedCrossRefGoogle Scholar
  40. Šmarda P, Müller J, Vrána J, Kočí K (2005) Ploidy level variability of some central European fescues (Festuca subg. Festuca, Poaceae). Biologia Bratislava 60:25–36Google Scholar
  41. Sonnleitner M, Flatscher R, García PE, Rauchová J, Suda J, Schneeweiss GM, Hülber K, Schönswetter P (2010) Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Ann Bot London 106:967–977CrossRefGoogle Scholar
  42. Steel RGD, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach, 2nd edn. McGraw-Hill Book Company, New YorkGoogle Scholar
  43. Suda J (2004) An employment of flow cytometry into plant biosystematics. Ph.D. thesis, Department of Botany, Faculty of Science, Charles University, PragueGoogle Scholar
  44. Suda J, Trávníček P (2006a) Estimation of relative nuclear DNA content in dehydrated plant tissues by flow cytometry. Curr Protocol Cytom 38:7.30.1–7.30.14Google Scholar
  45. Suda J, Trávníček P (2006b) Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—new prospects for plant research. Cytom Part A 69A:273–280CrossRefGoogle Scholar
  46. Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss GM, Trávníček P, Schönswetter P (2007) Complex distribution patterns of di-, tetra-, and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae). Am J Bot 94:1391–1401PubMedCrossRefGoogle Scholar
  47. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  48. ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows User’s Guide: software for Canonical Community Ordination (version 4.5). Section on Permutation Methods. Microcomputer Power, Ithaca, New YorkGoogle Scholar
  49. Voglmayr H (2000) Nuclear DNA amounts in mosses (Musci). Ann Bot London 85:531–546CrossRefGoogle Scholar
  50. Whittemore AT, Olsen RT (2011) Ulmus americana (Ulmaceae) is a polyploidy complex. Am J Bot 98:754–760PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jillian D. Bainard
    • 1
  • Brian C. Husband
    • 1
  • Sarah J. Baldwin
    • 1
  • Aron J. Fazekas
    • 1
  • T. Ryan Gregory
    • 1
  • Steven G. Newmaster
    • 1
  • Paul Kron
    • 1
  1. 1.Department of Integrative BiologyUniversity of GuelphGuelphCanada

Personalised recommendations