Chromosome Research

, 19:763 | Cite as

DNA content variation in monilophytes and lycophytes: large genomes that are not endopolyploid

  • Jillian D. Bainard
  • Thomas A. Henry
  • Luke D. Bainard
  • Steven G. Newmaster
Article

Abstract

Less than 1% of known monilophytes and lycophytes have a genome size estimate, and substantially less is known about the presence and prevalence of endopolyploid nuclei in these groups. Thirty-one monilophyte species (including three horsetails) and six lycophyte species were collected in Ontario, Canada. Using flow cytometry, genome size and degree of endopolyploidy were estimated for 37 species. Across the five orders covered, 1Cx-values averaged 4.2 pg in the Lycopodiales, 18.1 pg for the Equisetales, 5.06 pg for a single representative of the Ophioglossales, 14.3 pg for the Osmundales, and 7.06 pg for the Polypodiales. There was no indication of endoreduplication in any of the leaf, stem, or root tissue analyzed. This information is essential to our understanding of DNA content evolution in land plants.

Keywords

Genome size Endoreduplication C-value Flow cytometry Ferns Clubmosses Horsetails Pteridophytes 

Abbreviations

EI

Endoreduplication index

pg

Picograms

PI

Propidium iodide

PVP

Polyvinylpyrrolidone

Supplementary material

10577_2011_9228_MOESM1_ESM.docx (24 kb)
Table S 1Detailed taxonomic information for monilophytes and lycophytes analyzed by Bainard et al., along with collection and voucher details and references for cytological information. (DOCX 24 KB)

References

  1. Aagard SMD, Vogel JC, Wikström N (2009) Resolving maternal relationships in the clubmoss genus Diphasiastrum (Lycopodiaceae). Taxon 58:835–848Google Scholar
  2. Avanzi S, D’Amato F (1967) New evidence on the organization of the root apex in leptosporangiate ferns. Caryologia 20:257–264Google Scholar
  3. Bainard JD, Newmaster SG (2010) Endopolyploidy in bryophytes: widespread in mosses and absent in liverworts. Journal of Botany 2010:7 pages doi:10.1155/2010/316356
  4. Bainard JD, Fazekas AJ, Newmaster SG (2010) Methodology significantly affects genome size estimates: quantitative evidence using bryophytes. Cytom Part A 77A:725–732CrossRefGoogle Scholar
  5. Bainard LD, Bainard JD, Newmaster SG, Klironomos JN (2011) Mycorrhizal symbiosis stimulates endoreduplication in angiosperms. Plant Cell Environ. doi:10.1111/j.1365-3040.2011.02354.x
  6. Barow M, Meister A (2003) Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ 26:571–584CrossRefGoogle Scholar
  7. Bennert W, Lubienski M, Körner S, Steinberg M (2005) Triploidy in Equisetum subgenus Hippochaete (Equisetaceae, Pteridophyta). Ann Bot-London 95:807–815CrossRefGoogle Scholar
  8. Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. P Roy Soc B-Biol Sci 181:109–135CrossRefGoogle Scholar
  9. Bennett MD, Leitch IJ (2001) Nuclear DNA amounts in pteridophytes. Ann Bot-London 87:335–345CrossRefGoogle Scholar
  10. Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 5.0, Dec. 2010) http://data.kew.org/cvalues/
  11. Berch SM, Kendrick B (1982) Vesicular-arbuscular mycorrhizae of southern Ontario ferns and fern-allies. Mycologia 74:769–776CrossRefGoogle Scholar
  12. Bouchard RA (1976) DNA amount and organisation in some lower vascular plants. PhD Thesis, University of Chicago, USA.Google Scholar
  13. Brandes A, Heslop-Harrison JS, Kamm A, Kubis S, Doudrick RL, Schmidt T (1997) Comparative analysis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33:11–21PubMedCrossRefGoogle Scholar
  14. Britton DM (1953) Chromosome studies on ferns. Am J Bot 40:575–583CrossRefGoogle Scholar
  15. Britton DM (1964) Chromosome numbers of ferns in Ontario. Can J Bot 42:1349–1356CrossRefGoogle Scholar
  16. Bureš P, Tichý L, Wang Y, Baroš J (2003) Occurrence of Polypodium x mantoniae and new localities for P. interjectum in the Czech Republic confirmed using flow cytometry. Preslia 75:293–310Google Scholar
  17. Christenhusz MJM, Zhang X, Schneider H (2011) A linear sequence of extant families and genera of lycophytes and ferns. Phytotaxa 19:7–54Google Scholar
  18. D’Amato F, Avanzi S (1965) DNA content, DNA synthesis, and mitosis in the root apical cell of Marsilea strigosa. Caryologia 18:383–394Google Scholar
  19. D’Amato F, Avanzi S (1968) The shoot apical cell of Equisetum arvense, a quiescent cell. Caryologia 21:83–89Google Scholar
  20. De Veylder L, Beeckman T, Inzé D (2007) The ins and outs of the plant cell cycle. Nat Rev Mol Cell Bio 8:655–665CrossRefGoogle Scholar
  21. DeMaggio AE, Wetmore RH, Hannaford JE, Stetler DA, Raghavan V (1971) Ferns as a model system for studying polyploidy and gene dosage effects. BioScience 21:313–316CrossRefGoogle Scholar
  22. Des Marais D, Smith AR, Britton DM, Pryer KM (2003) Phylogenetic relationships and evolution of extant horsetails, Equisetum, based on chloroplast DNA sequence data (rbcL and trnL-F). Int J Plant Sci 164:737–751CrossRefGoogle Scholar
  23. Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow-cytometric estimation of nuclear DNA content in plants. Physiol Plantarum 85:625–631CrossRefGoogle Scholar
  24. Doležel J, Doleželová M, Novák FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plantarum 36:351–357CrossRefGoogle Scholar
  25. Doležel J, Greilhuber J, Lucretti S et al (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot-London 82(Suppl A):17–26CrossRefGoogle Scholar
  26. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytom Part A 51A:127–128Google Scholar
  27. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244PubMedCrossRefGoogle Scholar
  28. Ekrt L, Trávníček P, Jarolímová V, Vít P, Urfus T (2009) Genome size and morphology of the Dryopteris affinis group in central Europe. Preslia 81:261–280Google Scholar
  29. Ekrt L, Holubová TP, Suda J (2010) Species boundaries and frequency of hybridization in the Dryopteris carthusiana (Dryopteridaceae) complex: a taxonomic puzzle resolved using genome size data. Am J Bot 97:1208–1219PubMedCrossRefGoogle Scholar
  30. Engelen-Eigles G, Jones RJ, Phillips RL (2000) DNA endoreduplication in maize endosperm cells: the effect of exposure to short-term high temperature. Plant Cell Environ 23:657–663CrossRefGoogle Scholar
  31. Freeberg JA, Gifford EM (1984) The root apical meristem of Osmunda regalis. Am J Bot 71:558–563CrossRefGoogle Scholar
  32. Galbraith DW, Harkings KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051PubMedCrossRefGoogle Scholar
  33. Gastony GJ (1990) Gene silencing in a polyploidy homosporous fern: paleopolyploidy revisited. Proc Natl Acad Sci U S A 88:1602–1605CrossRefGoogle Scholar
  34. Gifford EM, Kurth E (1982) Quantitative studies of the root apical meristem of Equisetum scirpoides. Am J Bot 69:464–473CrossRefGoogle Scholar
  35. Gifford EM, Kurth E (1983) Quantitative studies of the vegetative shoot apex of Equisetum scirpoides. Am J Bot 70:74–79CrossRefGoogle Scholar
  36. Gifford EM, Polito VS (1981) Mitotic activity at the shoot apex of Azolla filiculoides. Am J Bot 68:1050–1055CrossRefGoogle Scholar
  37. Gifford EM, Polito VS, Nitayangkura S (1979) The apical cell in shoots and roots of certain ferns: a re-evaluation of its functional role in histogenesis. Plant Sci Lett 15:305–311CrossRefGoogle Scholar
  38. Gregory TR (2001) The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cell Mol Dis 27:830–843CrossRefGoogle Scholar
  39. Greilhuber J (1988) “Self-tanning”—a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Syst Evol 158:87–96CrossRefGoogle Scholar
  40. Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot-London 95:255–260CrossRefGoogle Scholar
  41. Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol 8:770–777PubMedCrossRefGoogle Scholar
  42. Grime JP, Mowforth MA (1982) Variation in genome size—an ecological interpretation. Nature 299:151–153CrossRefGoogle Scholar
  43. Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology: a functional approach to common British species. Unwin Hyman, LondonGoogle Scholar
  44. Hanson L, Leitch IJ (2002) DNA amounts for five pteridophyte species fill phylogenetic gaps in C-value data. Bot J Linn Soc 140:169–173CrossRefGoogle Scholar
  45. Haufler CH (1987) Electrophoresis is modifying our concepts of evolution in homosporous pteridophytes. Am J Bot 74:953–966CrossRefGoogle Scholar
  46. Jovtchev G, Barow M, Meister A, Schubert I (2007) Impact of environmental and endogenous factors on endopolyploidization in angiosperms. Environ Exp Bot 60:404–411CrossRefGoogle Scholar
  47. Kaźmierczak A (2003) Induction of cell division and cell expansion at the beginning of gibberellin A3-induced precocious antheridia formation in Anemia phyllitidis gametophytes. Plant Sci 165:933–939CrossRefGoogle Scholar
  48. Kaźmierczak A (2004) Aminooxyacetic acid inhibits antheridiogenesis and development of Anemia phyllitidis gametophytes. Plant Cell Rep 23:203–210PubMedCrossRefGoogle Scholar
  49. Kaźmierczak A (2010) Endoreplication in Anemia phyllitidis coincides with the development of gametophytes and male sex. Physiol Plantarum 138:321–328CrossRefGoogle Scholar
  50. Knight CA, Beaulieu JM (2008) Genome size scaling through phenotype space. Ann Bot-London 101:759–766CrossRefGoogle Scholar
  51. Kott LS, Britton DM (1982) A comparative study of sporophyte morphology of the three cytotypes of Polypodium virginianum in Ontario. Can J Bot 60:1360–1370CrossRefGoogle Scholar
  52. Kurth E (1982) Mitotic activity in the root apex of the water fern Marsilea vestita Hook. and Grev. Am J Bot 68:881–896CrossRefGoogle Scholar
  53. Kurth E, Gifford EM (1985) Ontogenetic changes in DNA content in roots of the water fern Azolla filiculoides. Am J Bot 72:1676–1683CrossRefGoogle Scholar
  54. Little DP, Moran RC, Brenner ED, Stevenson DW (2007) Nuclear genome size in Selaginella. Genome 50:351–356PubMedCrossRefGoogle Scholar
  55. Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot-London 98:679–689CrossRefGoogle Scholar
  56. Lysák MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52:123–132Google Scholar
  57. Manton I (1950) Problems of cytology and evolution in the Pteridophyta. University Press, CambridgeGoogle Scholar
  58. Mehra PN, Verna SC (1957) The cytology of some Athyrium species from northern India. Ann Bot-London 21:455–459Google Scholar
  59. Michaux N (1970) Détermination, par cytophotométrie, de la quantité d’ADN contenue dans le noyau de la cellule apicale des méristèms jeunes et adultes du Pteris cretica L. C R Acad Sci Sér D 271:656–659Google Scholar
  60. Moran RC (2008) Diversity, biogeography, and floristics. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, pp 367–394CrossRefGoogle Scholar
  61. Murray BG (1985) Karyotypes and nuclear DNA amounts in Polypodium L. (Polypodiaceae). Bot J Linn Soc 90:209–216CrossRefGoogle Scholar
  62. Nagl W (1978) Endopolyploidy and polyteny in differentiation and evolution. North-Holland Biomedical Press, AmsterdamGoogle Scholar
  63. Nakazato T, Barker MS, Rieseberg LH, Gastony GJ (2008) Evolution of the nuclear genome of ferns and lycophytes. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, pp 175–198CrossRefGoogle Scholar
  64. Noirot M, Barre P, Duperray C, Louarn J, Hamon S (2003) Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in coffee tree. Ann Bot-London 92:259–264CrossRefGoogle Scholar
  65. Obermayer M, Leitch IJ, Hanson L, Bennett MD (2002) Nuclear DNA C-values in 30 species double the familial representation in Pteridophytes. Ann Bot-London 90:209–217CrossRefGoogle Scholar
  66. Partanen CR (1961) Endomitosis in a polyploid series of fern prothalli. J Hered 52:139–144Google Scholar
  67. Partanen CR (1965) On the chromosomal basis for cellular differentiation. Am J Bot 52:204–209PubMedCrossRefGoogle Scholar
  68. Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15CrossRefGoogle Scholar
  69. Polito VS (1980) DNA microspectrophotometry of shoot apical meristem cell populations in Ceratopteris thalictroides (Filicales). Am J Bot 67:274–277CrossRefGoogle Scholar
  70. Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622PubMedCrossRefGoogle Scholar
  71. Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (Monilophytes) with a focus on the early leptosporangiate divergences. Am J Bot 91:1582–1598PubMedCrossRefGoogle Scholar
  72. Redondo N, Horjales M, Blanco A (1999) Cantidades de DNA nuclear eporas en Aspleniaceae: AspleniumL. Phyllitis Hill Ceterach Willd. Y Polypodium L. Nova Acta Cient Compostel Biol 9:99–107Google Scholar
  73. Soltis DE, Soltis PS (1987) Polyploidy and breeding systems in homosporous pteridophyta: a reevaluation. Am Nat 130:219–232CrossRefGoogle Scholar
  74. Speer WD, Werth CR, Hilu KW (1999) Relationships between two infraspecific taxa of Pteridium aquilinum (Dennstaedtiaceae). II. Isozyme evidence. Syst Bot 23:313–325CrossRefGoogle Scholar
  75. Takei M (1979) On the constancy of nuclear DNA content during gametophyte development in Lepisorus thunbergianus. Cytologia 44:651–659Google Scholar
  76. Tan MK, Thompson JA (1990) Variation in genome size in Pteridium. In: Thomson JA, Smith RT (eds) Bracken biology and management. Occasional Publication 40. Australian Institute of Agricultural Science, Sydney, pp 87–93Google Scholar
  77. Wagner WH (1954) Reticulate evolution in the Appalachian Aspleniums. Evolution 8:103–118Google Scholar
  78. Wagner WH (1955) Cytotaxonomic observations on North American ferns. Rhodora 57:219–240Google Scholar
  79. Wagner WH, Wagner FS (1980) Polyploidy in pteridophytes. In: Lewis WH (ed) Polyploidy, biological relevance: Proceedings of the International Conference on Polyploidy, Biological Relevance. Plenum Press, New York, pp 199–214Google Scholar
  80. Wang W, Tanurdzic M, Luo M et al (2005) Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorffii: a new resource for plant comparative genomics. BMC Plant Biol 5:10PubMedCrossRefGoogle Scholar
  81. Wikström N (2001) Diversification and relationships of extant homosporous lycopods. Am Fern J 92:150–165CrossRefGoogle Scholar
  82. Wikström N, Kenrick P (2001) Evolution of Lycopodiaceae (Lycopsida): estimating divergence times from rbcL gene sequences by use of nonparametric rate smoothing. Mol Phylogenet Evol 19:177–186PubMedCrossRefGoogle Scholar
  83. Yatsentyuk SP, Valiejo-Roman KM, Samigullin TH, Wikström TAV (2001) Evolution of Lycopodiaceae inferred from spacer sequencing of chloroplast rRNA genes. Russ J Genet 37:1068–1073CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jillian D. Bainard
    • 1
  • Thomas A. Henry
    • 1
  • Luke D. Bainard
    • 1
  • Steven G. Newmaster
    • 1
  1. 1.Department of Integrative BiologyUniversity of GuelphGuelphCanada

Personalised recommendations