Advertisement

Chromosome Research

, Volume 19, Issue 4, pp 481–491 | Cite as

Chromosomal study of a lamprey (Lampetra zanandreai Vladykov, 1955) (Petromyzonida: Petromyzontiformes): conventional and FISH analysis

  • Vincenzo Caputo
  • Massimo Giovannotti
  • Paola Nisi Cerioni
  • Andrea Splendiani
  • James Tagliavini
  • Ettore Olmo
Article

Abstract

Karyotype and other chromosomal characteristics in the Adriatic brook lamprey Lampetra zanandreai, representative of one of the most ancestral group of vertebrates, were examined using conventional (Ag-staining, C-banding as well as CMA3 and DAPI fluorescence) and molecular (FISH with 18/28S rDNA and EcoRI satDNA as probes) protocols with metaphase chromosomes derived from whole blood cultures. The chromosome complement had a modal diploid chromosome number of 2n = 164, as in other petromyzontid lamprey species. Ag-staining and CMA3 fluorescence, as well as FISH with 18/28S rDNA probes, detected nucleolar organizer regions (NORs) close to the centromeres of the biarmed chromosomes of pairs 1 and 2, the largest chromosome pairs of the complement. In addition to NORs, CMA3 fluorescence revealed positive signals in approximately 40 other chromosomes. DAPI stained mostly centromeric regions of many chromosomes as well as conspicuously massive blocks overlapping NOR sites. C-banding evidenced a large amount of constitutive heterochromatin in somatic chromosomes, with approximately 40 C-positive acrocentric elements completely heterochromatic, corresponding with the 40 CMA3+ chromosomes and positive heterochromatic blocks in pericentromeric regions of chromosome pairs 1 and 2. Polymerase chain reaction (PCR)-based cloning of satellite DNA with primers derived from Petromyzon marinus centromeric sequences was successful for L. zanandreai genomic DNA. The sequence was AT-rich (59%) and characterized by short consensus motifs similar to other centromeric satellite motifs. FISH using satDNA clones as a probe produced a fluorescent signal on a single pair of small chromosomes. This sequence was PCR-amplified also in L. planeri and P. marinus genomic DNA, and the evolution of this repetitive element in the above species was analysed.

Keywords

lamprey comparative cytogenetics chromosome banding EcoRI sequences FISH agnathan genomics 

Abbreviations

CMA3

Chromomycin A3

DAPI

4′,6-Diamidino-2 phenyl-indole

FISH

Fluorescence in situ hybridization

K2P

Kimura 2-parameters

NJ

Neighbour-joining

NOR

Nucleolar organizing region

rDNA

Major ribosomal sites

satDNA

Satellite DNA

Notes

Acknowledgements

The authors are very grateful to Petr Ráb (Academy of the Sciences of the Czech Republic, Liběchov, Czech Republic) for valuable comments and suggestions on the manuscript. We wish to thank the provincial Administration of Macerata (Italy) for permitting specimen collection, Mario Marconi (University of Camerino, Italy) for assisting in field activities, and Mrs. Patricia O’Brien for linguistic revision. This research was financed by Università Politecnica delle Marche.

Supplementary material

10577_2011_9197_MOESM1_ESM.jpg (86 kb)
1 Southern blot hybridisation of the genomic DNA of L. zanandreai (lane 1), P. marinus (lane 2) and L. planeri (lane 3) digested with EcoRI. The hybridization was carried out with a digoxigenin-labelled probe from the centromeric satellite isolated from L. zanandreai by PCR. Arrow indicates the monomer of the EcoRI satDNA. (JPEG 85 kb)

References

  1. Amemiya CT, Saha NR, Zapata A (2007) Evolution and development of immunological structures in the lamprey. Curr Opin Immunol 19:535–541PubMedCrossRefGoogle Scholar
  2. Bachmann L, Sperlich D (1993) Gradual evolution of a specific satellite DNA family in Drosophila ambigua. D. tristis and D. obscura. Mol Biol Evol 10:647–659PubMedGoogle Scholar
  3. Bianco PG (1992) Zoogeographical implications of a first record of Lethenteron zanandreai on the Adriatic slope of central Italy (Cyclostomata: Petromyzontidae). Ichthyol Explor Freshwaters 3:183–186Google Scholar
  4. Boán F, Viñas A, Rodríguez JM, Sánchez L, Gómez-Márquez J (1996) A new EcoRI family of satellite DNA in lampreys. FEBS Lett 394:187–190PubMedCrossRefGoogle Scholar
  5. Canapa A, Nisi Cerioni P, Barucca M, Olmo E, Caputo V (2002) A centromeric satellite DNA may be involved in heterochromatin compactness in gobiid fishes. Chromosome Res 10:297–304PubMedCrossRefGoogle Scholar
  6. Capriglione T, Cardone A, Olmo E, Odierna G (1991) Evolution of a centromeric satellite and phylogeny of lacertid lizards. Comp Biochem Physiol 100B:641–645Google Scholar
  7. Caputo V, Giovannotti M, Nisi Cerioni P, Splendiani A, Marconi M, Tagliavini J (2009a) Mitochondrial DNA variation of an isolated population of the Adriatic brook lamprey (Lampetra zanandreai Vladykov, 1955): phylogeographic and phylogenetic inferences (Agnatha: Petromyzontidae). J Fish Biol 75:2344–2351PubMedCrossRefGoogle Scholar
  8. Caputo V, Giovannotti M, Nisi Cerioni P, Splendiani A, Olmo E (2009b) Chromosomal study of native and hatchery trouts from Italy (Salmo trutta complex, Salmonidae): conventional and FISH analysis. Cytogenet Genome Res 124:51–62PubMedCrossRefGoogle Scholar
  9. Ciobanu DG, Rudykh IA, Grechko VV, Kramerov DA (2001) Molecular mechanisms of satellite DNA evolution in a group of closely related Caucasian rock lizards. In: Piruzian E, Volkova L (eds) Molecular Mechanisms of Genetic Processes and Biotechnology. International Symposium. Thesis: Moskow, Russia, p. 26Google Scholar
  10. Ciobanu DG, Grechko VV, Darevsky IS, Kramerov DA (2004) New satellite DNA in Lacerta s. str. lizards: evolutionary pathways and phylogenetic impact. J Exp Zoolog B Mol Dev Evol 302:505–516Google Scholar
  11. Colomba M, Vitturi R, Libertini A, Gregorini A, Zunino M (2006) Heterochromatin of the scarab beetle, Bubas bison (Coleoptera: Scarabaeidae) II. Evidence for AT-rich compartmentalization and high amount of rDNA copies. Micron 37:47–51PubMedCrossRefGoogle Scholar
  12. Cremisi F, Vignali R, Batistoni R, Barsacchi G (1988) Heterochromatic DNA in Triturus (Amphibia, Urodela). II. A centromeric satellite DNA. Chromosoma 97:204–211PubMedCrossRefGoogle Scholar
  13. Dasilva C, Hadji H, Ozouf-Costaz C, Nicaud S, Jaillon O, Weissenbach J, Roest Crollius H (2002) Remarkable compartmentalization of transposable elements and pseudogenes in the heterochromatin of the Tetraodon nigroviridis genome. Proc Natl Acad Sci U S A 99:13636–13641PubMedCrossRefGoogle Scholar
  14. De la Herrán R, Fontana F, Lanfredi M, Congiu L, Leis M, Rossi R, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA (2001) Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. Mol Biol Evol 18:432–436Google Scholar
  15. Docker MF, Youson JH, Beamish RJ, Devlin RH (1999) Phylogeny of the lamprey genus Lampetra inferred from mitochondrial cytochrome b and ND3 gene sequences. Can J Fish Aquat Sci 56:2340–2349CrossRefGoogle Scholar
  16. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  17. Fontana F, Bruch RM, Binkowski FP, Lanfredi M, Chicca M, Beltrami N, Congiu L (2004) Karyotype characterization of the lake sturgeon, Acipenser fulvescens (Rafinesque 1817) by chromosome banding and fluorescent in situ hybridization. Genome 47:742–746PubMedCrossRefGoogle Scholar
  18. Fujiwara A, Nishida-Umehara C, Sakamoto T, Okamoto N, Nakayama I, Abe S (2001) Improved fish lymphocyte culture for chromosome preparation. Genetica 111:77–89PubMedCrossRefGoogle Scholar
  19. Garrido-Ramos MA, Jamilena M, Lozano R, Ruiz Rejón C, Ruiz Rejón M (1995) The EcoRI centromeric satellite DNA of the Sparidae family (Pisces: Perciformes) contains a sequence motive common to other vertebrate centromeric satellite DNAs. Cytogenet Cell Genet 71:345–351PubMedCrossRefGoogle Scholar
  20. Gess RW, Coates MI, Rubidge BS (2006) A lamprey from Devonian period of South Africa. Nature 443:981–984PubMedCrossRefGoogle Scholar
  21. Gill HS, Renaud CB, Chapleau F, Mayden RL, Potter IC (2003) Phylogeny of living parasitic lamprey (Petromyzontiformes) based on morphological data. Copeia 2003:687–703CrossRefGoogle Scholar
  22. Haaf T, Schmid M, Steinlein C, Galetti PM, Willard H (1993) Organization and molecular cytogenetics of a satellite DNA family from Hoplias malabaricus (Pisces, Erythrinidae). Chromosome Res 1:77–86PubMedCrossRefGoogle Scholar
  23. Holcik J, Mrakovcic M (1997) First record of Lethenteron zanandreai (Cyclostomata, Petromyzontidae) in the Adriatic basin of the Balkan peninsula and its zoogeographic consequences. Folia Zoologica 46:263–271Google Scholar
  24. Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015PubMedCrossRefGoogle Scholar
  25. Howell WM, Denton TE (1969) Chromosomes of ammocoetes of the Ohio brook lamprey Lampetra aepyptera. Copeia 1960:393–395CrossRefGoogle Scholar
  26. Howell WM, Duckett CR (1971) Somatic chromosome of the lamprey, Icthyomyzon gagei. Experentia 27:222–223CrossRefGoogle Scholar
  27. Kasahara M (2007) The 2R hypothesis: an update. Curr Opin Immunol 19:547–552PubMedCrossRefGoogle Scholar
  28. Kimura MA (1980) simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequence. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  29. King LM, Cummings MP (1997) Satellite DNA repeat sequence variation is low in three species of burying beetles in the genus Nicrophorus (Coleoptera: Silphidae). Mol Biol Evol 14:1088–1095PubMedGoogle Scholar
  30. Klinkhardt M, Tesche M, Greven H (1995) Data Base of Fish Chromosomes. Westarp Wissenschaften, MagdeburgGoogle Scholar
  31. Kojima NF, Kojima KK, Kobayakawa S, Higashide N, Hamanaka C, Nitta A, Koeda I, Yamaguchi T, Shichiri M, Kohno S, Kubota S (2010) Whole chromosome elimination and chromosome terminus elimination both contribute to somatic differentiation in Taiwanese hagfish Paramyxine sheni. Chromosome Res 18:383–400PubMedCrossRefGoogle Scholar
  32. Kubota S, Takano J, Tsuneishi R, Kobayakawa S, Fujikawa N, Nabeyama M, Kohono S (2001) Highly repetitive DNA families restricted to germ cells in a Japanese hagfish (Eptatretus burgeri): a hierarchical and mosaic structure in eliminated chromosomes. Genetica 111:319–328PubMedCrossRefGoogle Scholar
  33. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245PubMedCrossRefGoogle Scholar
  34. Kuraku S, Kuratani S (2006) Time scale for Cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences. Zool Sci 23:1053–1064PubMedCrossRefGoogle Scholar
  35. Kusakabe R, Kuratani S (2007) Evolutionary perspectives from development of the mesodermal components in the lamprey. Dev Dyn 236:2410–2420PubMedCrossRefGoogle Scholar
  36. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  37. McCauley DW, Kuratani S (2008) Cyclostome studies in the context of vertebrate evolution. Zool Sci 25:953–954PubMedCrossRefGoogle Scholar
  38. Osório J, Rétaux S (2008) The lamprey in evolutionary studies. Dev Genes Evol 218:221–235PubMedCrossRefGoogle Scholar
  39. Plohl M, Luchetti A, Meštrović N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409:72–82PubMedCrossRefGoogle Scholar
  40. Potter IC, Robinson ES (1981) New developments in vertebrate cytotaxonomy V. Citotaxonomy of lampreys. Genetica 56:149–151CrossRefGoogle Scholar
  41. Potter IC, Robinson ES, Walton SM (1968) The mitotic chromosome of the lamprey Mordacia mordax (Agnatha: Petromyzonidae). Experentia 24:966–967CrossRefGoogle Scholar
  42. Potter IC, Rothwell B (1970) The Mitotic chromosome of the lamprey, Petromyzon marinus. Experentia 26:429–430CrossRefGoogle Scholar
  43. Renaud CB (1997) Conservation status of northern hemisphere lampreys (Petromyzontidae). J Appl Ichthyol 13:143–148CrossRefGoogle Scholar
  44. Robinson ES, Potter IC (1981) The chromosome of the southern hemispheric lamprey, Geotria australis Gray. Experentia 37:239–240CrossRefGoogle Scholar
  45. Robinson ES, Potter IC, Webb CJ (1974) Homogeneity of holarctic lamprey karyotypes. Caryologia 27:443–454Google Scholar
  46. Robles F, de la Herrán R, Ludwig A, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA (2004) Evolution of ancient satellite DNAs in sturgeon genomes. Gene 338:133–142PubMedCrossRefGoogle Scholar
  47. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  48. Sauka-Spengler T, Meulemans D, Jones M, Bronner-Fraser M (2007) Ancient evolutionary origin of the neural crest gene regulatory network. Dev Cell 13:405–420PubMedCrossRefGoogle Scholar
  49. Schmid M, Haaf T, Geile B, Sims S (1983) Chromosome banding in Amphibia. VIII. An unusual XY/XX sex chromosome system in Gastrotheca riobambae (Anura, Hylidae). Chromosoma 88:69–82PubMedCrossRefGoogle Scholar
  50. Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. Springer, New YorkGoogle Scholar
  51. Schweizer D (1979) Fluorescent chromosome banding in plants: applications, mechanisms and implications for chromosome structure. In: Davies DR, Hopwood RA (eds) The Plant Genome. Proc 4th John Innes Symposium, John Innes Charity, Norwich, pp 61–72Google Scholar
  52. Silver MR, Kawauchi H, Nozaki M, Sower SA (2004) Cloning and analysis of the lamprey GnRH-III cDNA from eigth species representing the three famiglie of Petromyzontiformes. Gen Comp End 139:85–94CrossRefGoogle Scholar
  53. Singer MF (1982) Highly repeated sequences in mammalian genomes. Int Rev Cytol 76:67–112PubMedCrossRefGoogle Scholar
  54. Smith JJ, Antonacci F, Eichler EE, Amemiya CT (2009) Programmed loss of millions of base pairs from a vertebrate genome. Proc Natl Acad Sci U S A 106:11212–11217PubMedCrossRefGoogle Scholar
  55. Smith JJ, Stuart AB, Sauka-Spengler T, Clifton SW, Amemiya CT (2010) Development and analysis of a germline BAC resource for the sea lamprey, a vertebrate that undergoes substantial chromatin diminution. Chromosoma 119:381–389PubMedCrossRefGoogle Scholar
  56. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Expl Cell Res 75:304–306CrossRefGoogle Scholar
  57. Suzuki A, Ikeda Y, Nakayama K (1999) Chromosome and Ag-NORs of three species of Lampetra (Petromyzontiformes). Chromosome Sci 3:150Google Scholar
  58. Swarça AC, Fenocchio AS, Cestari MM, Dias AL (2003) Analysis of heterochromatin by combination of C-banding and CMA3 and DAPI staining in two fish species (Pimelodidae, Siluriformes). Genetica 119:87–92PubMedCrossRefGoogle Scholar
  59. Tutman P, Dulcic J, Glamuzina B (2009) First record of Po brook lamprey, Lethenteron zanandreai (Cephalospidomorpha, Petromyzontiformes, Petromyzontidae) in the Hutoro-Blato wetland, Bosnia and Herzegonina. Acta Ichthyologica Piscatoria 39:55–58CrossRefGoogle Scholar
  60. Vissel B, Nagy A, Choo KHA (1992) A satellite III sequence shared by human chromosomes 13, 14 and 21 that is contiguous with alpha satelliteDNA. Cytogenet Cell Genet 61:81–86PubMedCrossRefGoogle Scholar
  61. Wong AKC, Rattner JB (1988) Sequence organization and cytological localization of the minor satellite of mouse. Nucl Acids Res 16:11645–11661PubMedCrossRefGoogle Scholar
  62. Zanandrea G, Capanna E (1964) Contributo alla cariologia del genere Lampetra. Boll Zool 31:669–677Google Scholar
  63. Zardoya R, Meyer A (1996) Evolutionary relationships of the coelacanth, lungfishes, and tetrapods based on the 28 S ribosomal RNA gene. Proc Natl Acad Sci U S A 93:5449–5454PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Vincenzo Caputo
    • 1
  • Massimo Giovannotti
    • 1
  • Paola Nisi Cerioni
    • 1
  • Andrea Splendiani
    • 1
  • James Tagliavini
    • 2
  • Ettore Olmo
    • 1
  1. 1.Dipartimento di Biochimica, Biologia e GeneticaUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Dipartimento di Biologia Evolutiva e FunzionaleUniversità di ParmaParmaItaly

Personalised recommendations