Chromosome Research

, Volume 18, Issue 2, pp 287–299 | Cite as

Integration of cytogenetic and genetic linkage maps of Lotus japonicus, a model plant for legumes

  • Nobuko Ohmido
  • Akiko Ishimaru
  • Seiji Kato
  • Shusei Sato
  • Satoshi Tabata
  • Kiichi Fukui


To construct a high-resolution pachytene chromosome map, we used the chromosome image analyzing system version 3 and fluorescence in situ hybridization. Two ribosomal RNA genes (45S rDNA and 5S rDNA), two major tandem repeat DNAs (LjTR1 and LjTR2), two major retroelements (LjRE1 and LjRE2), and 27 transformation-competent artificial chromosome clones were physically localized on Lotus japonicus (Miyakojima MG-20, 2n = 12) chromosomes. The distributions of heterochromatin and euchromatin along six chromosomes were compared based on the linkage map. Distortion between the recombination frequencies and physical chromosomal distance was recognized where the centromeric heterochromatic regions and constitutive heterochromatin are composed of the highest copy tandem repeat LjTR1 on the interstitial specific regions. Our study shows that the heterochromatin are composed of the specific repeated sequences, and the discrepancy between the recombination frequency and cytological information detected in L. japonicus chromosomes is due to the heterochromatin.


Lotus japonicus L. CHIAS3 pachytene chromosome FISH integration map heterochromatin 



chromosome image analyzing system


derived cleaved amplified polymorphic sequences




fluorescence in situ hybridization


linkage group


Louts japonicus retroelements


Louts japonicus tandem repeat DNA


long terminal repeats


polymerase chain reaction


ribosomal RNA gene




simple sequence repeat


transformation-competent artificial chromosome



This work was supported in part by a grant to N.O. from Japan Science and Technology: Integration of chromosome and genetic maps in Lotus japonicus (16580003).


  1. Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078CrossRefPubMedGoogle Scholar
  2. Asamizu ET, Kato S, Sato Y et al (2003) Structural analysis of a Lotus japonicus genome. IV. Sequence features and mapping of seventy-three TAC clones which cover the 7.5 Mb regions of the genome. DNA Res 10:115–122CrossRefPubMedGoogle Scholar
  3. Budiman MA, Chang SB, Lee S et al (2004) Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theor Appl Genet 108:190–196CrossRefPubMedGoogle Scholar
  4. Cheng ZJ, Murata M (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 164:665–672PubMedGoogle Scholar
  5. Cheng Z, Dong F, Langdon T et al (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704CrossRefPubMedGoogle Scholar
  6. Choi HK, Mun JH, Kim DJ et al (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294CrossRefPubMedGoogle Scholar
  7. Copenhaver GP, Nickel K, Kuromori T et al (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474CrossRefPubMedGoogle Scholar
  8. de Jong HJ, Fransz P, Zabel P (1999) High-Resolution FISH in plants—techniques and applications. Trends Plant Sci Rev 4:258–263CrossRefGoogle Scholar
  9. Fukui K, Kakeda K (1990) Quantitative karyotyping of barley chromosomes by image analysis methods. Genome 33:450–458Google Scholar
  10. Fukui K, Ohmido N, Khush GS (1994) Variability in rDNA loci in genus Oryza detected through fluorescence in situ hybridization. Theor Appl Genet 87:893–899CrossRefGoogle Scholar
  11. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877CrossRefPubMedGoogle Scholar
  12. Ha S, Moore PH, Heinz D, Kato S, Ohmido N, Fukui K (1999) Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods. Plant Mol Biol 39:1165–1173CrossRefPubMedGoogle Scholar
  13. Hayashi M, Miyahara A, Sato S et al (2001) Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res 8:301–310CrossRefPubMedGoogle Scholar
  14. Heslop-Harrison JS, Brandes A, Taketa S et al (1997) The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100:197–204CrossRefPubMedGoogle Scholar
  15. Heslop-Harrison JS, Brandes A, Schwarzacher T (2003) Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosome Res 11:241–253CrossRefPubMedGoogle Scholar
  16. Holligan D, Zhang X, Jiang N, Pritham EJ, Wessler SR (2006) The transposable element landscape of the model legume Lotus japonicus. Genetics 174:2215–2228CrossRefPubMedGoogle Scholar
  17. Ito M, Miyamoto J, Mori Y et al (2000) Genome and chromosome dimensions of Lotus japonicus. J Plant Res 113:435–442CrossRefGoogle Scholar
  18. Jiang Q, Gresshoff PM (1997) Classical and molecular genetics of the model legume Lotus japonicus. Mol Plant Microbe Interact 10:59–68CrossRefPubMedGoogle Scholar
  19. Kamisugi Y, Furuya N, Iijima K, Fukui K (1993) Computer-aided automatic identification of rice chromosomes by image parameters. Chromosome Res 1:189–196CrossRefPubMedGoogle Scholar
  20. Kaneko T, Asamizu R, Kato T et al (2003) Structural analysis of a Lotus japonicus genome. III. Sequence features and mapping of sixty-two TAC clones which cover the 6.7 Mb regions of the genome. DNA Res 10:27–33CrossRefPubMedGoogle Scholar
  21. Kato S, Ohmido N, Fukui K (2003a) Development of a quantitative pachytene chromosome map in Oryza sativa by imaging methods. Genes Genet Syst 78:155–161CrossRefPubMedGoogle Scholar
  22. Kato T, Sato S, Nakamura Y et al (2003b) Structural analysis of a Lotus japonicus genome. V. Sequence features and mapping of sixty-four TAC clones which cover the 6.4 Mb regions of the genome. DNA Res 10:277–285CrossRefPubMedGoogle Scholar
  23. Kulikova O, Gualtieri G, Geurts R et al (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58CrossRefPubMedGoogle Scholar
  24. Kumekawa N, Ohmido N, Fukui K, Ohtsubo E, Ohtsubo H (2001) A new gypsy-type retrotransposon, RIRE7: preferential insertion into the tandem repeat sequence TrsD in pericentromeric heterochromatin regions of rice chromosomes. Mol Genet Genomics 265:480–488CrossRefPubMedGoogle Scholar
  25. Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412PubMedGoogle Scholar
  26. Nagaki K, Cheng Z, Ouyang S et al (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145CrossRefPubMedGoogle Scholar
  27. Nakamura Y, Kaneko T, Asamizu E et al (2002) Structural analysis of a Lotus japonicus genome. II. Sequence features and mapping of sixty-five TAC clones which cover the 6.5-Mb regions of the genome. DNA Res 9:63–70CrossRefPubMedGoogle Scholar
  28. Ohmido N, Akiyama Y, Fukui K (1998) Physical mapping of unique nucleotide sequences on identified rice chromosomes. Plant Mol Biol 38:1043–1052CrossRefPubMedGoogle Scholar
  29. Ohmido N, Kijima K, Ashikawa I, de Jong HJ, Fukui K (2001) Visualization of the terminal structure of rice chromosomes 6 and 12 using multicolor FISH to chromosomes and extended DNA fibers. Plant Mol Biol 47:413–421CrossRefPubMedGoogle Scholar
  30. Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosome map of the model legume Lotus japonicus. Genetics 161:1661–1672PubMedGoogle Scholar
  31. Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–369CrossRefPubMedGoogle Scholar
  32. Sato S, Tabata S (2006) Lotus japonicus as a platform for legume research. Curr Opin Plant Biol 9:128–132CrossRefPubMedGoogle Scholar
  33. Sato S, Kaneko T, Nakamura Y, Asamizu E, Kato T, Tabata S (2001) Structural analysis of a Lotus japonicus genome. I. Sequence features and mapping of fifty-six TAC clones which cover the 5.4 Mb regions of the genome. DNA Res 8:311–318CrossRefPubMedGoogle Scholar
  34. Sato S, Nakamura Y, Kaneko T et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239CrossRefPubMedGoogle Scholar
  35. Szinay D, Chang SB, Khrustaleva L et al (2008) High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J 56:627–637CrossRefPubMedGoogle Scholar
  36. Udvardi MK, Tabata S, Parniske M, Stougaard J (2005) Lotus japonicus: legume research in the fast lane. Trends Plant Sci 10:222–228CrossRefPubMedGoogle Scholar
  37. Weber B, Schmidt T (2009) Nested Ty3-gypsy retrotransposons of a single beta procumbens centromere contain a putative chromodomain. Chromosome Res 17:379–396CrossRefPubMedGoogle Scholar
  38. Young ND, Mudge J, Ellis TH (2003) Legume genomes: more than peas in a pod. Curr Opin Plant Biol 6:199–204CrossRefPubMedGoogle Scholar
  39. Young ND, Cannon SB, Sato S et al (2005) Sequencing the gene spaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181CrossRefPubMedGoogle Scholar
  40. Zhang W, Yi C, Bao W et al (2005) The transcribed 165-bp CentO satellite is the major functional centromeric element in the wild rice species Oryza punctata. Plant Physiol 139:306–315CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Nobuko Ohmido
    • 1
  • Akiko Ishimaru
    • 1
  • Seiji Kato
    • 2
  • Shusei Sato
    • 3
  • Satoshi Tabata
    • 3
  • Kiichi Fukui
    • 4
  1. 1.Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
  2. 2.Yamanashi Prefectural Agritechnology CenterYamanashiJapan
  3. 3.Kazusa DNA Research InstituteKisarazuJapan
  4. 4.Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations