Chromosome Research

, Volume 17, Issue 3, pp 419–436 | Cite as

Cross-species chromosome painting in Cetartiodactyla: Reconstructing the karyotype evolution in key phylogenetic lineages

  • Anastasia I. Kulemzina
  • Vladimir A. Trifonov
  • Polina L. Perelman
  • Nadezhda V. Rubtsova
  • Vitaly Volobuev
  • Malcolm A. Ferguson-Smith
  • Roscoe Stanyon
  • Fengtang Yang
  • Alexander S. Graphodatsky


Recent molecular and morphological studies place Artiodactyla and Cetacea into the order Cetartiodactyla. Within the Cetartiodactyla such families as Bovidae, Cervidae, and Suidae are well studied by comparative chromosome painting, but many taxa that are crucial for understanding cetartiodactyl phylogeny remain poorly studied. Here we present the genome-wide comparative maps of five cetartiodactyl species obtained by chromosome painting with human and dromedary paint probes from four taxa: Cetacea, Hippopotamidae, Giraffidae, and Moschidae. This is the first molecular cytogenetic report on pilot whale, hippopotamus, okapi, and Siberian musk deer. Our results, when integrated with previously published comparative chromosome maps allow us to reconstruct the evolutionary pathway and rates of chromosomal rearrangements in Cetartiodactyla. We hypothesize that the putative cetartiodactyl ancestral karyotype (CAK) contained 25–26 pairs of autosomes, 2n = 52–54, and that the association of human chromosomes 8/9 could be a cytogenetic signature that unites non-camelid cetartiodactyls. There are no unambiguous cytogenetic landmarks that unite Hippopotamidae and Cetacea. If we superimpose chromosome rearrangements on the supertree generated by Price and colleagues, several homoplasy events are needed to explain cetartiodactyl karyotype evolution. Our results apparently favour a model of non-random breakpoints in chromosome evolution. Cetariodactyl karyotype evolution is characterized by alternating periods of low and fast rates in various lineages. The highest rates are found in Suina (Suidae+Tayasuidae) lineage (1.76 rearrangements per million years (R/My)) and the lowest in Cetaceans (0.07 R/My). Our study demonstrates that the combined use of human and camel paints is highly informative for revealing evolutionary karyotypic rearrangements among cetartiodactyl species.


cetaceans Pecora hippopotamus breakpoint reuse Zoo-FISH chromosome evolution 



diploid number of chromosomes


bacterial artificial chromosome


Bos taurus


cetartiodactyl ancestral karyotype


Camelus dromedarius


degenerate oligonucleotide primer–polymerase chain reaction


fluorescence in-situ hybridization


Giraffa camelopardalis


Globicephala melas


banding G banding by trypsin using Giemsa


Hippopotamus amphibius


Homo sapiens


Moschus moschiferus


million years ago


Okapia johnstoni


phylogenetic analysis using parsimony


Pecari tajacu


rearrangements per million years


Sus scrofa



This study was funded in part by the research grants of the Russian Fund for Basic Research, programs of the Russian Academy of Science MCB, BOE, and Integration program of the Siberian Branch of the Russian Academy of Science (A.S.G.) and a Wellcome Trust grant to M.A.F.-S.

R.S. was partially supported by a grant ‘Mobility of Italian and foreign researchers residing abroad’ from the Italian Ministry of Universities and Research. F.Y. is supported by the Wellcome Trust. We gratefully acknowledge Stephen O’Brien (Laboratory of Genomic Diversity, NCI-Frederick) for providing cell lines of whale and okapi; Marlys Houck and Oliver A. Ryder (Frozen Zoo of San Diego Zoo’s Conservation Research Center, CA) for providing hippo and giraffe cell lines; and Michael Dean, M. Thompson (NCI-Frederick) for help in providing giraffe samples.

R.S. would like to acknowledge Lutz Froenike for discussion and comments on whale phylogenetics.

Supplementary material

10577_2009_9032_Fig1_ESM.jpg (1.3 mb)
Supplementary Fig. S1

FISH examples of localization of some human (HSA) and dromedary (CDR) probes onto studied species (JPG 1.29 MB)

10577_2009_9032_Fig2_ESM.jpg (572 kb)
Supplementary Fig. S2

FISH of dromedary (CDR) painting probes onto cow (BTA) and pig (SSC), with additional signals revealed (JPG 571 kb)

10577_2009_9032_Fig3_ESM.jpg (1.2 mb)
Supplementary Fig. S3

Supplementary figure S3 Schemes of possible chromosome rearrangements for two conserved associations: CDR 23/21/9/13 and CDR 4/31 (JPG 1.21 MB)


  1. Adega F, Chaves R, Kofler A et al (2006) High-resolution comparative chromosome painting in the Arizona collared peccary (Pecari tajacu, Tayassuidae): a comparison with the karyotype of pig and sheep. Chromosome Res 14:243–251PubMedCrossRefGoogle Scholar
  2. Allard MW, Miyamoto MM, Jarecki L, Kraus F, Tennant MR (1992) DNA systematics and evolution of the artiodactyl family Bovidae. Proc Natl Acad Sci USA 89:3972–3976PubMedCrossRefGoogle Scholar
  3. Arnason U (1972) The role of chromosomal rearrangements in mammalian speciation with special reference to Cetacea and Pinnipedia. Hereditas 70:113–118PubMedGoogle Scholar
  4. Arnason U (1974) Comparative chromosome studies in Cetacea. Heredidas 77:1–36CrossRefGoogle Scholar
  5. Arnason U, Gullberg A (1996) Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans. Mol Biol Evol 13:407–417PubMedGoogle Scholar
  6. Arnason U, Gullberg A, Gretarsdottir S, Ursing B, Janke A (2000) The mitochondrial genome of the sperm whale and a new molecular reference for estimating eutherian divergence dates. J Mol Evol 50:569–578PubMedGoogle Scholar
  7. Avise JC, Robinson TJ (2008) Hemiplasy: a new term in the lexicon of phylogenetics. Sys Biol 57:503–507CrossRefGoogle Scholar
  8. Bailey JA, Baertsch R, Kent WJ, Haussler D, Eichler EE (2004) Hotspots of mammalian chromosomal evolution. Genome Biology 5:R 23CrossRefGoogle Scholar
  9. Bajpai S, Gingerich PD (1998) A new Eocene archaeocete (Mammalia,Cetacea) from India and the time of origin of whales. Proc Natl Acad Sci USA 95:15464–15468PubMedCrossRefGoogle Scholar
  10. Balmus G, Trifonov VA, Biltueva LS (2007) Cross species painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype. Chromosome Res 15:499–514PubMedCrossRefGoogle Scholar
  11. Beck RMD, Bininda-Emonds ORP, Cardillo M, Liu FGR, Purvis A (2006) A higher-level MRP supertree of placental mammals. BMC Evol Biol 6:93PubMedCrossRefGoogle Scholar
  12. Behrensmeyer AK, Deino AL, Hill A, Kingston JD, Saunders JJ (2002) Geology and geochronology of the middle Miocene Kipsaramon site complex, Muruyur Beds, Tugen Hills, Kenya. J Hum Evol 42:11–38PubMedCrossRefGoogle Scholar
  13. Bielec PE, Gallagher DS, Womack JE, Busbee DL (1998) Homologies between human and dolphin chromosomes detected by heterologous chromosome painting. Cytogenet Cell Genet 81:18–26PubMedCrossRefGoogle Scholar
  14. Biltueva LS, Yang F, Vorobieva NV, Graphodatsky AS (2004) Comparative map between the domestic pig and dog. Mamm Genome 15:809–818PubMedCrossRefGoogle Scholar
  15. Bininda-Emonds ORP, Cardillo M, Jones KE et al (2007) The delayed rise of present-day mammals. Nature 446:507–512PubMedCrossRefGoogle Scholar
  16. Boisserie JR, Lihoreau F, Brunet M (2005a) The position of hippopotamidae within cetartiodactyla. Proc Natl Acad Sci USA 102(5):1537–1541PubMedCrossRefGoogle Scholar
  17. Boisserie JR, Lihoreau F, Brunet M (2005b) Origins of Hippopotamidae (Mammalia, Cetartiodactyla): towards resolution. Zool Scr 34(2):119–143CrossRefGoogle Scholar
  18. Bonnet-Garnier A, Claro F, Thevenon S, Gantie M, Hayes H (2003) Identification by R-banding and FISH of chromosome arms involved in Robertsonian translocations in several deer species. Chromosome Res 11:649–663PubMedCrossRefGoogle Scholar
  19. Bosma AA, Haan NA, Arkesteijn GJ, Yang F, Yerle M, Zijlstra C (2004) Comparative chromosome painting between the domestic pig (Sus scrofa) and two species of peccary, the collared peccary (Tayassu tajacu) and the white-lipped peccary (T. pecari): a phylogenetic perspective. Cytogenet Genome Res 105:115–121PubMedCrossRefGoogle Scholar
  20. Bunch TD, Foote WC, Maciulis A (1985) Chromosome banding pattern homologies and NORs for the Bactrian camel, guanaco and llama. J Hered 76:115–118Google Scholar
  21. Chaves R, Froenicke L, Guedes-Pinto H, Wienberg J (2004) Multidirectional chromosome painting between the Hirola antelope (Damaliscus hunteri, Alcelaphini, Bovidae), sheep and human. Chromosome Res 12:495–503PubMedCrossRefGoogle Scholar
  22. Chi J, Fu B, Nie W, Wang J, Graphodatsky AS, Yang F (2005a) New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis). Cytogenet Genome Res 108:310–316PubMedCrossRefGoogle Scholar
  23. Chi JX, Huang L, Nie W, Wang J, Fu B, Yang F (2005b) Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chromosoma 114(3):167–172PubMedCrossRefGoogle Scholar
  24. Ferguson-Smith MA (1997) Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications. Eur J Hum Genet 5:253–265PubMedGoogle Scholar
  25. Fernandez MH, Vrba ES (2005) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev 80:269–302CrossRefGoogle Scholar
  26. Fitch WM, Beintema JJ (1999) Correcting parsimonious trees for unseen nucleotide substitutions: the effect of dense branching as exemplified by ribonuclease. Mol Biol Evol 7(5):438–443Google Scholar
  27. Fontana F, Rubini M (1990) Chromosome evolution in Cervidae. Biosystems 24:157–174PubMedCrossRefGoogle Scholar
  28. Froenicke L, Wienberg J (2001) Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids. Mamm Genome 12:442–449CrossRefGoogle Scholar
  29. Froenicke L, Caldés MG, Graphodatsky A et al (2006) Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res 16:311–313CrossRefGoogle Scholar
  30. Gallagher DS, Derr JN, Womack JE (1994) Chromosome conservation among the advanced pecorans and determination of the primitive bovid karyotype. J Hered 85:204–210PubMedGoogle Scholar
  31. Gatesy J (1997) More DNA support for a Cetacea/Hippopotamidae clade: the blood-clotting protein gene gammafibrinogen. Mol Biology Evol 14:537–543Google Scholar
  32. Graphodatsky AS, Sablina OV, Meyer MN et al (2000) Comparative cytogenetics of hamsters of the genus Calomyscus. Cytogenet Cell Genet 88:296–304PubMedCrossRefGoogle Scholar
  33. Graphodatsky AS, Yang F, O’Brien PCM et al (2001) Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet Cell Genet 92:243–247PubMedCrossRefGoogle Scholar
  34. Guha S, Goyal SP, Kashyap VK (2007) Molecular phylogeny of musk deer: a genomic view with mitochondrial 16S rRNA and cytochrome b gene. Mol Phylogenet Evol 42(3):585–597PubMedCrossRefGoogle Scholar
  35. Hasegawa M, Adachi J (1996) Phylogenetic position of cetaceans relative to artiodactyls: reanalysis of mitochondrial and nuclear sequences. Mol Biol Evol 13:710–717PubMedGoogle Scholar
  36. Hassanin A, Douzery EJP (2003) Molecular and morphological phylogenies of Ruminantia and the alternative position of the Moschidae. Syst Biol 52(2):206–228PubMedCrossRefGoogle Scholar
  37. Huang L, Nie W, Wang J, Su W, Yang F (2005) Phylogenomic study of the subfamily Caprinae by cross-species chromosome painting with Chinese muntjac paints. Chromosome Res 13:389–399PubMedCrossRefGoogle Scholar
  38. Huang L, Chi J, Nie W, Wang J, Yang F (2006) Phylogenomics of several deer species revealed by comparative chromosome painting with Chinese muntjac paints. Genetica 127:25–33PubMedCrossRefGoogle Scholar
  39. Huang L, Nesterenko A, Nie W et al (2008) Karyotypic evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints. Cytogenet Genome Res 122:132–138PubMedCrossRefGoogle Scholar
  40. Hsu TC, Benirschke K (1967) An atlas of mammalian chromosomes. Springer-Verlag, New YorkGoogle Scholar
  41. Iannuzzi L, Di Meo GP, Perucatti A, Bardaro T (1998) ZOO-FISH and R-banding reveal extensive conservation of human chromosome regions in euchromatic regions of river buffalo chromosomes. Cytogenet Cell Genet 82:210–214PubMedCrossRefGoogle Scholar
  42. Janis CM (1993) Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu Rev Ecol Syst 24:467–500CrossRefGoogle Scholar
  43. Janis CM, Scott KM, Jacobs LL (1998) Evolution of tertiary mammals of north America. terrestrial carnivores, ungulates, and ungulatelike mammals. Cambridge University Press, CambridgeGoogle Scholar
  44. Kleineidam RG, Pesole G, Breukelman HJ, Beintema JJ, Kastelein RA (1999) Inclusion of £r Artiodactyla based on phylogenetic analysis of pancreatic ribonuclease genes. J Mol Evol 48:360–368PubMedCrossRefGoogle Scholar
  45. Kuznetsova MV, Kholodova MV, Luschekina AA (2002) Phylogenetic analysis of sequences of the 12S and 16S rRNA mitochondrial genes in the family Bovidae: new evidence. Russ J Genet 38:942–950CrossRefGoogle Scholar
  46. Langer P (2001) Evidence from the digestive tract on phylogenetic relationships in ungulates and whales. J Zool Syst Evol Res 39:77–90CrossRefGoogle Scholar
  47. Lum JK, Nikaido M, Shimamura M et al (2000) Consistency of SINE insertion topology and flanking sequence tree: quantifying relationships among cetartiodactyls. Mol Biol Evol 17:1417–1424PubMedGoogle Scholar
  48. Mahon A (2004) A molecular supertree of the Artiodactyla. In: Bininda-Emonds ORP (ed) Phylogenetic supertrees: Combining information to reveal the tree of life. Kluwer Academic Publishers, Dordrecht, pp 411–437Google Scholar
  49. Maniou Z, Wallis OC, Wallis M (2003) Episodic molecular evolution of pituitary growth hormone in Cetartiodactyla. J Mol Evol 58:743–753CrossRefGoogle Scholar
  50. Marcot JD (2007) Molecular phylogeny of terrestrial artiodactyls. In: Prothero DR, Foss SE (eds) The evolution of artiodactyls. The John Hopkins University Press, Baltimore, pp 4–18Google Scholar
  51. Matthee CA, Burzlaff JD, Taylor JF, Davis SK (2001) Mining the mammalian genome for artiodactyl systematics. Syst Biol 50:367–390PubMedCrossRefGoogle Scholar
  52. Matthee CA, Eick G, Willows-Munro S, Montgelard C, Pardini AT, Robinson TJ (2007) Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics. Mol Phylogenet Evol 42:827–837PubMedCrossRefGoogle Scholar
  53. Montgelard C, Catzejfis MF, Douzery E (1997) Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12s rRNA mitochondrial sequences. Mol Biol Evol 14(5):550–559PubMedGoogle Scholar
  54. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618PubMedCrossRefGoogle Scholar
  55. Murphy WJ, Pringle TH, Tess A, Crider TA, Springer MS, Miller W (2007) Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17:413–421PubMedCrossRefGoogle Scholar
  56. Nikaido M, Rooney AP, Okada N (1999) Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: Hippopotamuses are the closest extant relatives of whales. Proc Natl Acad Sci USA 96:10261–10266PubMedCrossRefGoogle Scholar
  57. Nishihara H, Hasegawa M, Okada N (2006) Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc Natl Acad Sci USA 103:9929–9934PubMedCrossRefGoogle Scholar
  58. Nowak RM (1999) Order artiodactyla. In: Walker’s mammals of the world. John Hopkins University Press, LondonGoogle Scholar
  59. O’Leary MA, Geisler JH (1999) The position of Cetecea within Mammalia: Phylogenetic analysis of morphological data from extinct and extant taxa. Syst Biol 48:455–490PubMedCrossRefGoogle Scholar
  60. Pevzner P, Tesler G (2003) Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci USA 100:7672–7677PubMedCrossRefGoogle Scholar
  61. Pinton P, Schibler L, Cribiu E, Gellin J, Yerle M (2000) Localization of 113 anchor loci in pigs: improvement of the comparative map for humans, pigs, and goats. Mamm Genome 11:306–315PubMedCrossRefGoogle Scholar
  62. Price SA, Bininda-Emonds ORP, Gittleman JL (2005) A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biol Rev 80:445–473PubMedCrossRefGoogle Scholar
  63. Robinson TJ, Ruiz-Herrera A, Avise JC (2008) Hemiplasy and homoplasy in the karyotypic phylogenies of mammals. Proc Natl Acad Sci USA 105:14477–14481PubMedCrossRefGoogle Scholar
  64. Rose KD (1996) On the origin of the order Artiodactyla. Proc Natl Acad Sci USA 93:1705–1709PubMedCrossRefGoogle Scholar
  65. Ryder OA (2006a) A G-stained karyotype of Massai giraffe (Giraffa camelopardalis tippelskirchi). In: O’Brien SJ, Menninger JC, Nash WG (eds) Atlas of mammalian chromosomes. Wiley-Liss, Hoboken, NJ, p 577Google Scholar
  66. Ryder OA (2006b) A G- stained karyotype of okapi (Okapia johnstoni). In: O’Brien SJ, Menninger JC, Nash WG (eds) Atlas of mammalian chromosomes, Wiley-Liss, Hoboken, NJ, p 577Google Scholar
  67. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972PubMedCrossRefGoogle Scholar
  68. Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechikak I, Okada N (1997) Molecular evidence from retroposons that whales form a clade within even toed ungulates. Nature 388:666–670Google Scholar
  69. Simpson CD (1984) Artiodactyls. In: Anderson S, Jones JK (eds) Orders and Families of Recent Mammals of the World. Wiley, New York, pp 563–588Google Scholar
  70. Slate J, Stijn TCV, Anderson RM et al (2002) A deer (Subfamily Cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics 160:1587–1597PubMedGoogle Scholar
  71. Stanley HF, Kadwell M, Wheeler JC (1994) Molecular evolution of the family Camelidae: a mitochondrial study. Proc R Soc Lond B 256:1–6CrossRefGoogle Scholar
  72. Stanyon R (2006) A G- stained karyotype of hippopotamus (Hippopotamus amphibius). In: O’Brien SJ, Menninger JC, Nash WG (eds) Atlas of Mammalian Chromosomes. Wiley-Liss, Hoboken, NJ, p 573Google Scholar
  73. Su B, Wang YX, Lan H, Wang W, Zhang Y (1999) Phylogenetic study of complete cytochrome b genes in musk deer (genus Moschus) using museum samples. Mol Phylogenet Evol 12:241–249PubMedCrossRefGoogle Scholar
  74. Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725PubMedCrossRefGoogle Scholar
  75. Theodor JM (2004) Molecular clock divergence estimates and the fossil record of Cetartiodactyla. J Paleontol 78:39–44CrossRefGoogle Scholar
  76. Trifonov VA, Stanyon R, Nesterenko AI et al (2008) Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res 16:89–107PubMedCrossRefGoogle Scholar
  77. Ursing BM, Arnason U (1998) Analyses of mitochondrial genomes strongly support a hippopotamus–whale clade. Proc R Soc Lond B 265:2251–2255CrossRefGoogle Scholar
  78. Volleth M, Heller KG, Pfeiffer RA, Hameister H (2002) A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families. Chromosome Res 10:477–497PubMedCrossRefGoogle Scholar
  79. Wurster DH, Benirschke K (1968) Chromosome studies in the superfamily Bovoidea. Chromosoma 25:152–171PubMedCrossRefGoogle Scholar
  80. Yang F, O’Brien PC, Wienberg J, Ferguson-Smith MA (1997a) A reappraisal of the tandem fusion theory of karyotype evolution in the Indian muntjac using chromosome painting. Chromosome Res 5:109–117PubMedCrossRefGoogle Scholar
  81. Yang F, O’Brien PC, Wienberg J, Neitzel H, Lin CC, Ferguson-Smith MA (1997b) Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma 106:37–43PubMedCrossRefGoogle Scholar
  82. Yang F, O’Brien PC, Wienberg J, Ferguson-Smith MA (1997c) Evolution of the black muntjac (Muntiacus crinifrons) karyotype revealed by comparative chromosome painting. Cytogenet Cell Genet 76:159–163PubMedCrossRefGoogle Scholar
  83. Yang F, O’Brien PC, Milne BS et al (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62:189–202PubMedCrossRefGoogle Scholar
  84. Yang F, Fu B, O’Brien PC, Robinson TJ, Ryder OA, Ferguson-Smith MA (2003) Karyotypic relationships of horses and zebras: results of cross-species chromosome painting. Cytogenet Genome Res 102:235–343PubMedCrossRefGoogle Scholar
  85. Yang F, Fu B, O’Brien PC, Nie W, Ryder OA, Ferguson-Smith MA (2004) Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules. Chromosome Res 12:65–76PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Anastasia I. Kulemzina
    • 1
  • Vladimir A. Trifonov
    • 1
  • Polina L. Perelman
    • 1
    • 2
  • Nadezhda V. Rubtsova
    • 1
  • Vitaly Volobuev
    • 3
  • Malcolm A. Ferguson-Smith
    • 4
  • Roscoe Stanyon
    • 5
  • Fengtang Yang
    • 6
  • Alexander S. Graphodatsky
    • 1
  1. 1.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussia
  2. 2.National Cancer InstituteFrederickUSA
  3. 3.Museum National d’Histoire NaturelleOrigine, Structure et Evolution de la BiodiversiteParisFrance
  4. 4.Department of Veterinary MedicineCambridge Resource Centre for Comparative GenomicsCambridgeUK
  5. 5.Department of Evolutionary BiologyUniversity of FlorenceFlorenceItaly
  6. 6.The Wellcome Trust Sanger InstituteWellcome Trust Genome CampusCambridgeUK

Personalised recommendations