Chromosome Research

, Volume 17, Issue 3, pp 331–346 | Cite as

Molecular structure and chromosome distribution of three repetitive DNA families in Anemone hortensis L. (Ranunculaceae)

  • Jelena Mlinarec
  • Mike Chester
  • Sonja Siljak-Yakovlev
  • Dražena Papeš
  • Andrew R. Leitch
  • Višnja Besendorfer


The structure, abundance and location of repetitive DNA sequences on chromosomes can characterize the nature of higher plant genomes. Here we report on three new repeat DNA families isolated from Anemone hortensis L.; (i) AhTR1, a family of satellite DNA (stDNA) composed of a 554–561 bp long EcoRV monomer; (ii) AhTR2, a stDNA family composed of a 743 bp long HindIII monomer and; (iii) AhDR, a repeat family composed of a 945 bp long HindIII fragment that exhibits some sequence similarity to Ty3/gypsy-like retroelements. Fluorescence in-situ hybridization (FISH) to metaphase chromosomes of A. hortensis (2n = 16) revealed that both AhTR1 and AhTR2 sequences co-localized with DAPI-positive AT-rich heterochromatic regions. AhTR1 sequences occur at intercalary DAPI bands while AhTR2 sequences occur at 8–10 terminally located heterochromatic blocks. In contrast AhDR sequences are dispersed over all chromosomes as expected of a Ty3/gypsy-like element. AhTR2 and AhTR1 repeat families include polyA- and polyT-tracks, AT/TA-motifs and a pentanucleotide sequence (CAAAA) that may have consequences for chromatin packing and sequence homogeneity. AhTR2 repeats also contain TTTAGGG motifs and degenerate variants. We suggest that they arose by interspersion of telomeric repeats with subtelomeric repeats, before hybrid unit(s) amplified through the heterochromatic domain. The three repetitive DNA families together occupy ∼10% of the A. hortensis genome. Comparative analyses of eight Anemone species revealed that the divergence of the A. hortensis genome was accompanied by considerable modification and/or amplification of repeats.


anemone satellite DNA retrotransposon subtelomeric repeats fluorescence in situ hybridization 



Anemone hortensis dispersed repeats


Anemone hortensis tandem repeats


basic local alignment research tool


star detection module


chromomycin A3




digoxigenin DNA


extended DNA fibre FISH


ethylenediaminetetraacetic acid


fluorescence in-situ hybridization


fluoroscein isothiocyanate


Japanese landrace


National Centre for Biotechnology Information


polymerase chain reaction


peptide nucleic acid


sodium dodecyl sulfate


standard saline citrate


satellite DNA


terminal restriction fragment



We are grateful to K. Riha from the Gregor Mendel Institute, Vienna for the help in TRF analysis. V.B. thanks J. Puizina for helpful suggestions during the preparation of the manuscript. This work was funded by the Ministry of Science, Education and Sport of the Republic of Croatia, grants 119112 and 119-1191196-1201 and British Scholarship Trust foundation that funded training of J.M. at Queen Mary University of London.

Supplementary material

10577_2009_9025_Fig1_ESM.jpg (980 kb)
Supplementary Fig. S1

Alignment of cloned repeated units. Sequences have a high A+T content (66–69%) and 81–87% sequence similarity. Internal motifs that are repeated are boxed in red, green and blue. KpnI restriction site and pentanucleotide CAAAA motif are underlined (JPG 980 kb)

10577_2009_9025_Fig2_ESM.jpg (583 kb)
Supplementary Fig. S2

Primary structure of AhTR2-1 repetitive sequence with TTTAGGG motifs and degenerate variants (boxed) and pentanucleotide CAAAA sequence (underlined). Arrows indicate primer pair AhTR2-1 and AhTR2-2 used for PCR amplification of AhTR2 sequence family (JPG 582 kb)

10577_2009_9025_Fig3_ESM.jpg (2.7 mb)
Supplementary Fig. S3

Sequence alignment of 8 subtelomeric AhTR2 clones (AhTR2-2-AhTR2-10) obtained by PCR amplification and AhTR2-1 HindIII fragment from A. hortensis. Short deletions/amplifications are present in the region with TTTAGGG tandem repeats (boxed) (JPG 2.74 MB)

10577_2009_9025_Fig4_ESM.jpg (1 mb)
Supplementary Fig. S4

Sequences having regions of high levels of similarity with reverse transcriptase/RNaseH (RTH) and integrase (INT) of the Ty3/gypsy-like retrotransposon, areas boxed (JPG 1.03 MB)


  1. Bernet GP, Asíns MJ (2003) Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus. Theor Appl Genet 108:121–130PubMedCrossRefGoogle Scholar
  2. Bůžek J, Koutníková H, Houben A et al (1997) Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosome Res 5:57–65PubMedCrossRefGoogle Scholar
  3. Chen CM, Wang CT, Wang CJ, Ho CH, Kao YY, Chen CC (1997) Two tandemly repeated telomere-associated sequences in Nicotiana plumbaginifolia. Chromosome Res 5:561–568PubMedCrossRefGoogle Scholar
  4. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995PubMedCrossRefGoogle Scholar
  5. Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252PubMedCrossRefGoogle Scholar
  6. Cohn M, Edström JE (1992) Telomere-associated repeats in Chironomus form discrete subfamilies generated by gene conversion. J Mol Evol 35:114–122PubMedCrossRefGoogle Scholar
  7. Cowan CR, Carlton PM, Cande WZ (2001) The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant Physiol 125:532–538PubMedCrossRefGoogle Scholar
  8. Cox AV, Bennett ST, Parokonny AS, Kenton A, Callimasia MA, Bennett MD (1993) Comparison of plant telomere locations using a PCR-generated synthetic probe. Ann Bot 72:239–247CrossRefGoogle Scholar
  9. Cullis CA, Schweizer D (1974) Repetitious DNA in some Anemone species. Chromosoma 44:417–421CrossRefGoogle Scholar
  10. Dechyeva D, Schmidt T (2006) Molecular organization of terminal repetitive DNA in Beta species. Chromosome Res 14:881–897PubMedCrossRefGoogle Scholar
  11. Dover G (1982) Molecular drive a cohesive mode of species evolution. Nature 299:111–117PubMedCrossRefGoogle Scholar
  12. Ehrendorfer F, Samuel R (2001) Contributions to a molecular phylogeny and systematic of Anemone and related genera (Ranunculaceae-Anemoninae). Acta Phytotaxon Sin 39:293–307Google Scholar
  13. Fajkus J, Kovarik A, Kralovics R, Bezdek M (1995) Organization of telomeric and subtelomeric chromatin in the higher plant Nicotiana tabacum. Mol Gen Genet 247:633–638PubMedCrossRefGoogle Scholar
  14. Fajkus J, Leitch AR, Chester M, Sýkorová E (2008) Evolution, composition and functions of telomeres and subtelomeres: lessons from plants. In: Nosek J, Tomáska L′u eds. Origin and Evolution of Telomeres. Neuveden, USA: Landes Biosciences, pp. 114–127Google Scholar
  15. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051PubMedCrossRefGoogle Scholar
  16. Ganal MW, Lapitan NLV, Tanksley SD (1991) Macrostructure of the tomato telomeres. Plant Cell 3:87–94PubMedCrossRefGoogle Scholar
  17. Garrido-Ramos MA, de la Herrán R, Ruiz Rejón M, Ruiz Rejón C (1999) A subtelomeric satellite DNA family isolated from the genome of the dioecious plant Silene latifolia. Genome 42:442–446PubMedCrossRefGoogle Scholar
  18. Gilles CB (1984) The synaptonemal complex in higher plants. Critical Rev Plant Sci 2:81–116CrossRefGoogle Scholar
  19. Gilles CB, Dollin AE, Dai K (1989) Chromosomal and genetic factors influencing synaptonemal complex formation. In: Fredga K, Kihlman BA, Bennett MD (eds) Chromosomes today. Unwin Hyman Ltd, London, pp. 297–310Google Scholar
  20. Hagemann S, Scheer B, Schweizer D (1993) Repetitive sequences in the genome of Anemone blanda: Identification of tandem arrays and dispersed repeats. Chromosoma 102:312–324PubMedCrossRefGoogle Scholar
  21. Hall T (1999) BioEdit v5.0.9. North Carolina State UniversityGoogle Scholar
  22. Hemleben V, Kovarik A, Torres-Ruiz RA, Volkov RA, Beridze T (2007) Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Syst Biodivers 5:277–289CrossRefGoogle Scholar
  23. Higashiyama T, Noutoshi Y, Akiba M, Yamada T (1995) Telomere and LINE-like elements at the termini of the Chlorella chromosome I. Nucleic Acids Symp Ser 34:71–72PubMedGoogle Scholar
  24. Hoot SB (1995) Phylogenetic relationships in Anemone (Ranunculaceae) based on DNA restriction site variation and morphology. Plant Syst Evol 9(Suppl):295–300Google Scholar
  25. Hoot SB, Reznicek AA, Palmer JD (1994) Phylogenetic relationships in Anemone (Ranunculaceae) based on morphology and chloroplast DNA. Syst Bot 19:169–200CrossRefGoogle Scholar
  26. Hudakova S, Michalek W, Presting GG et al (2001) Sequence organization of barley centromeres. Nucleic Acids Res 29:5029–5035PubMedCrossRefGoogle Scholar
  27. Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:545CrossRefGoogle Scholar
  28. Kishii M, Nagaki K, Tsujimoto H, Sasakuma T (1999) Exclusive localization of tandem repetitive sequences in subtelomeric heterochromatin regions of Leymus racemosus (Poaceae, Triticeae). Chromosome Res 7:519–529PubMedCrossRefGoogle Scholar
  29. Kojima KK, Kubo Y, Fujiwara H (2002) Complex and tandem repeat structure of subtelomeric regions in the Taiwan cricket, Teleogryllus taiwanemma. J Mol Evol 54:474–485PubMedCrossRefGoogle Scholar
  30. Koukalova B, Reich J, Matyasek R, Kuhrova V, Bezdek M (1989) A BamHI family of highly repeated DNA sequences of Nicotiana tabacum. Theor Appl Genet 78:77–80CrossRefGoogle Scholar
  31. Kubis S, Heslop-Harrison JS, Schmidt T (1997) A family of differentially amplified repetitive DNA sequences in the genus Beta reveals genetic variation in Beta vulgaris subspecies and cultivars. J Mol Evol 44:310–320PubMedCrossRefGoogle Scholar
  32. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532PubMedCrossRefGoogle Scholar
  33. Lim KY, Matyasek R, Lichtenstein CP, Leitch AR (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245–258PubMedCrossRefGoogle Scholar
  34. Lim KY, Kovarik A, Matyasek R et al (2006) Comparative genomics and repetitive sequence divergence in the species of dipoid Nicotiana section Alatae. Plant J 48:907–919PubMedCrossRefGoogle Scholar
  35. Macas J, Mészáros T, Nouzová M (2002) PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18:28–35PubMedCrossRefGoogle Scholar
  36. Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8:427PubMedCrossRefGoogle Scholar
  37. Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values of 70 species. Biol Cell 78:41–51PubMedCrossRefGoogle Scholar
  38. Marks GE, Schweizer D (1974) Giemsa banding: karyotype differences in some species of Anemone and in Hepatica nobilis. Chromosoma 44:405–416CrossRefGoogle Scholar
  39. Mlinarec J, Papeš D, Besendorfer V (2006) Ribosomal, telomeric and heterochromatin sequences localization in the karyotype of Anemone hortensis. Bot J Linn Soc 150:177–186CrossRefGoogle Scholar
  40. Nagaki K, Tsujimoto H, Sasakuma T (1999) A novel repetitive sequence, termed the JNK repeat family, located on an extra heterochromatic region of chromosome 2R of Japanese rye. Chromosome Res 6:95–101CrossRefGoogle Scholar
  41. Neumann P, Nouzová M, Macas J (2001) Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome 44:716–728PubMedCrossRefGoogle Scholar
  42. Ohmido N, Kijima K, Akiyama Y, de Jong JH, Fukui K (2000) Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet 263:388–394PubMedCrossRefGoogle Scholar
  43. Palladino F, Gasser SM (1994) Telomere maintenance and gene repression: a common end? Curr Opin Cell Biol 6:373–379PubMedCrossRefGoogle Scholar
  44. Petit M, Lim KY, Julio E et al (2007) Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Gen Genet 278:1–15Google Scholar
  45. Pich U, Schubert I (1998) Terminal heterochromatin and alternative telomeric sequences in Allium cepa. Chromosome Res 6:315–321PubMedCrossRefGoogle Scholar
  46. Pryde FE, Louis EJ (1999) Limitations of silencing at native yeast telomeres. EMBO J 18:2538–2550PubMedCrossRefGoogle Scholar
  47. Puizina J, Weiss-Schneeweiss H, Pedrosa-Harand A et al (2003) Karyotype analysis in Hyacinthella dalmatica (Hyacinthaceae) reveals vertebrate-type telomere repeats at the chromosome ends. Genome 46:1070–1076PubMedCrossRefGoogle Scholar
  48. Riha K, Fajkus J, Siroky J, Vyskot B (1998) Developmental control of telomere lengths and telomerase activity in plants. Plant Cell 10:1691–1698PubMedCrossRefGoogle Scholar
  49. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8019PubMedCrossRefGoogle Scholar
  50. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor: New York, pp 6.33–6.64Google Scholar
  51. Saunders VA, Houben A (2001) The pericentromeric heterochromatin of the grass Zingeria biebersteiniana (2n = 4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences. Genome 44:955–961PubMedCrossRefGoogle Scholar
  52. Schmidt T, Heslop-, Harrison JS (1998) Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci 3:195–199CrossRefGoogle Scholar
  53. Schmidt T, Kubis S, Katsiotis A, Jung C, Heslop-Harrison JS (1998) Molecular and chromosomal organization of two repetitive DNA sequences with intercalary locations in sugar beet and other Beta species. Theor Appl Genet 97:696–704CrossRefGoogle Scholar
  54. Schuettpelz E, Hoot SB, Samuel R, Ehrendorfer F (2002) Multiple origins of Southern hemisphere Anemone (Ranunculaceae) based on plastid and nuclear sequence data. Plant Syst Evol 231:143–151CrossRefGoogle Scholar
  55. Scoles GJ, Gill BS, Xin Z-Y et al (1988) Frequent duplication and deletion events in the 5S RNA genes and the associated space regions of the Triticae. Plant Syst Evol 160:105–122CrossRefGoogle Scholar
  56. Sharma S, Raina SN (2005) Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 109:15–26PubMedCrossRefGoogle Scholar
  57. Singh RJ (2003) Plant cytogenetics. CRC Press, LondonGoogle Scholar
  58. Skalická K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166:291–303PubMedCrossRefGoogle Scholar
  59. Soler C, García P, Jouve N (1990) Meiotic expression of modified chromosome constitution and structure in x Tritiosecale Wittmack. Heredity 65:21–28CrossRefGoogle Scholar
  60. Staginnus C, Winter P, Desel C, Schmidt T, Kahl G (1999) Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea (Cicer arietinum L.) genome. Plant Mol Biol 39:1037–1050PubMedCrossRefGoogle Scholar
  61. Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13:699–705PubMedCrossRefGoogle Scholar
  62. Sýkorová E, Fajkus J, Ito M, Fukui K (2001) Transition between two forms of heterochromatin at plant subtelomeres. Chromosome Res 9:309–323PubMedCrossRefGoogle Scholar
  63. Sýkorová E, Cartagena J, Horakova M, Fukui K, Fajkus J (2003a) Characterization of telomere-subtelomere junctions in Silene latifolia. Mol Genet Genomics 269:13–20PubMedGoogle Scholar
  64. Sýkorová E, Lim KY, Kunicka Z et al (2003b) Telomere variability in the monocotyledonous plant order Asparagales. Proc R Soc Lond B 270:1893–1904CrossRefGoogle Scholar
  65. Taketa S, Ando H, Takeda K, Harrison GE, Heslop-Harrison JS (2000) The distribution, organization and evolution of two abundant and widespread repetitive DNA sequences in the genus Hordeum. Theor Appl Genet 100:169–176CrossRefGoogle Scholar
  66. Tamura M (1995) Angiospermae: Ordnung Ranunculales, Fam. Ranunculaceae. In: Engler A, Prantl K, eds. Die Natürlichen Pflanzenfamilien. ed. 2 (Hiepko P ed.). 17aIV. Berlin: Duncker and Humblot, pp. 1–555Google Scholar
  67. Tek AL, Jiang J (2004) The centromeric regions of potato chromosomes contain megabase-sized tandem arrays of telomere-similar sequences. Chromosoma 113:77–83PubMedCrossRefGoogle Scholar
  68. Tek AL, Song J, Macas J, Jiang J (2005) Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Genetics 170:1231–1238PubMedCrossRefGoogle Scholar
  69. Thomson KG, Thomas JE, Dietzgen RG (1998) Retrotransposon-like sequences integrated into the genome of pineapple Ananas comosus. Plant Mol Biol 38:461–465PubMedCrossRefGoogle Scholar
  70. Vershinin AV, Heslop-Harrison JS (1998) Comparative analysis of the nucleosomal structure of rye, wheat and their relatives. Plant Mol Biol 36:149–161PubMedCrossRefGoogle Scholar
  71. Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley SD (2006) Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172:2529–2540PubMedCrossRefGoogle Scholar
  72. Weiss H, Schertan H (2002) Aloe spp.-plants with vertebrate-like telomeric sequences. Chromosome Res 10:155–164PubMedCrossRefGoogle Scholar
  73. Weiss-Schneeweiss H, Riha K, Jang CG, Puizina J, Schertan H, Schweizer D (2004) Chromosome termini of the monocot plant Othocallis siberica are maintained by telomerase, which specifically synthesizes vertebrate-type telomere sequences. Plant J 37:484–493PubMedCrossRefGoogle Scholar
  74. Zhong XB, Fransz PF, Wennekes-van Eden J et al (1998) FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J 13:507–517PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jelena Mlinarec
    • 1
  • Mike Chester
    • 2
  • Sonja Siljak-Yakovlev
    • 3
  • Dražena Papeš
    • 1
  • Andrew R. Leitch
    • 2
  • Višnja Besendorfer
    • 1
  1. 1.Department of Molecular Biology, Biology Division, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
  3. 3.Department of Ecology, Evolution and Systematics, UMR CNRS 8079University Paris-SudOrsay CedexFrance

Personalised recommendations