Chromosome Research

, Volume 17, Issue 2, pp 201–214

How cohesin and CTCF cooperate in regulating gene expression

Article

Abstract

Cohesin is a DNA-binding protein complex that is essential for sister chromatid cohesion and facilitates the repair of damaged DNA. In addition, cohesin has important roles in regulating gene expression, but the molecular mechanisms of this function are poorly understood. Recent experiments have revealed that cohesin binds to the same sites in mammalian genomes as the zinc finger transcription factor CTCF. At a few loci CTCF has been shown to function as an enhancer-blocking transcriptional insulator, and recent observations indicate that this function depends on cohesin. Here we review what is known about the roles of cohesin and CTCF in regulating gene expression in mammalian cells, and we discuss how cohesin might mediate the insulator function of CTCF.

Keywords

insulator chromatin transcription cohesin CTCF 

Abbreviations

ATP

adenosin-5′-triphosphate

CdLS

Cornelia de Lange Syndrome

ChIP

chromatin immunoprecipitation

cHS4

5′HS4 chicken β-globin insulator

CTCF

zinc finger transcription factor

EcR-B1

ecdysone receptor B1

ICR

imprinting control region, also called differentially methylated region or domain (DMR/DMD)

KSHV

Karposi sarcoma-associated herpes virus

LCR

locus control region

ncRNA

non-coding RNA

PEV

position-effect-variegation

qPCR

quantitative polymerase chain reaction

RBS/SC

Roberts/SC Phocomelia Syndrome

RNAi

RNA interference

TEV

tobacco etch virus protease

References

  1. Anderson DE, Losada A, Erickson HP, Hirano T (2002) Condensin, cohesin display different arm conformations with characteristic hinge angles. J Cell Biol 156:419–424PubMedCrossRefGoogle Scholar
  2. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837PubMedCrossRefGoogle Scholar
  3. Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155PubMedCrossRefGoogle Scholar
  4. Bartolomei MS, Webber AL, Brunkow ME, Tilghman SM (1993) Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev 7:1663–1673PubMedCrossRefGoogle Scholar
  5. Bausch C, Noone S, Henry JM et al (2007) Transcription alters chromosomal locations of cohesin in Saccharomyces cerevisiae. Mol Cell Biol 27:8522–8532PubMedCrossRefGoogle Scholar
  6. Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–485PubMedCrossRefGoogle Scholar
  7. Benard CY, Kebir H, Takagi S, Hekimi S (2004) mau-2 acts cell-autonomously to guide axonal migrations in Caenorhabditis elegans. Development 131:5947–5958PubMedCrossRefGoogle Scholar
  8. Bender MA, Bulger M, Close J, Groudine M (2000) Beta-globin gene switching, DNase I sensitivity of the endogenous beta-globin locus in mice do not require the locus control region. Mol Cell 5:387–393PubMedCrossRefGoogle Scholar
  9. Ben-Shahar TR, Heeger S, Lehane C et al (2008) Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321:563–566PubMedCrossRefGoogle Scholar
  10. Chao W, Huynh KD, Spencer RJ, Davidow LS, Lee JT (2002) CTCF, a candidate trans-acting factor for X-inactivation choice. Science 295:345–347PubMedCrossRefGoogle Scholar
  11. Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ (2005) Antisense transcription, heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell 20:483–489PubMedCrossRefGoogle Scholar
  12. Chung JH, Bell AC, Felsenfeld G (1997) Characterization of the chicken beta-globin insulator. Proc Natl Acad Sci U S A 94:575–580PubMedCrossRefGoogle Scholar
  13. Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Nasmyth K (2000) Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2, Scc4 proteins. Mol Cell 5:243–254PubMedCrossRefGoogle Scholar
  14. de Laat W, Klous P, Kooren J et al (2008) Three-dimensional organization of gene expression in erythroid cells. Curr Top Dev Biol 82:117–139PubMedCrossRefGoogle Scholar
  15. Deardorff MA, Kaur M, Yaeger D et al (2007) Mutations in cohesin complex members SMC3, SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet 80:485–494PubMedCrossRefGoogle Scholar
  16. DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859PubMedCrossRefGoogle Scholar
  17. Donze D, Adams CR, Rine J, Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13:698–708PubMedCrossRefGoogle Scholar
  18. Dorsett D (2007) Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes. Chromosoma 116:1–13PubMedCrossRefGoogle Scholar
  19. Dorsett D (2009) Cohesin, gene expression and development: lessons from Drosophila. Chomosom Res. doi:10.1007/s10577-009-9022-5
  20. Dorsett D, Eissenberg JC, Misulovin Z, Martens A, Redding B, McKim K (2005) Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development 132:4743–4753PubMedCrossRefGoogle Scholar
  21. Engel N, Raval AK, Thorvaldsen JL, Bartolomei MS (2008) Three-dimensional conformation at the H19/Igf2 locus supports a model of enhancer tracking. Hum Mol GenetGoogle Scholar
  22. Epner E, Reik A, Cimbora D et al (1998) The beta-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse beta-globin locus. Mol Cell 2:447–455PubMedCrossRefGoogle Scholar
  23. Ferguson-Smith AC, Sasaki H, Cattanach BM, Surani MA (1993) Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362:751–755PubMedCrossRefGoogle Scholar
  24. Filippova GN (2008) Genetics and epigenetics of the multifunctional protein CTCF. Curr Top Dev Biol 80:337–360PubMedCrossRefGoogle Scholar
  25. Filippova GN, Fagerlie S, Klenova EM et al (1996) An exceptionally conserved transcriptional repressor CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol 16:2802–2813PubMedGoogle Scholar
  26. Gandhi R, Gillespie PJ, Hirano T (2006) Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr Biol 16:2406–2417PubMedCrossRefGoogle Scholar
  27. Gaszner M, Felsenfeld G (2006) Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7:703–713PubMedCrossRefGoogle Scholar
  28. German J (1979) Roberts’ syndrome. I. Cytological evidence for a disturbance in chromatid pairing. Clin Genet 16:441–447PubMedCrossRefGoogle Scholar
  29. Glynn EF, Megee PC, Yu HG et al (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259PubMedCrossRefGoogle Scholar
  30. Gordillo M, Vega H, Trainer AH et al (2008) The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Hum Mol Genet 17:2172–2180PubMedCrossRefGoogle Scholar
  31. Gottesfeld JM, Forbes DJ (1997) Mitotic repression of the transcriptional machinery. Trends Biochem Sci 22:197–202PubMedCrossRefGoogle Scholar
  32. Gregan J, Spirek M, Rumpf C (2008) Solving the shugoshin puzzle. Trends Genet 24:205–207PubMedCrossRefGoogle Scholar
  33. Gullerova M, Proudfoot NJ (2008) Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132:983–995PubMedCrossRefGoogle Scholar
  34. Haering CH, Lowe J, Hochwagen A, Nasmyth K (2002) Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 9:773–788PubMedCrossRefGoogle Scholar
  35. Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K (2008) The cohesin ring concatenates sister DNA molecules. NatureGoogle Scholar
  36. Hakimi MA, Bochar DA, Schmiesing JA et al (2002) A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418:994–998PubMedCrossRefGoogle Scholar
  37. Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489PubMedCrossRefGoogle Scholar
  38. Hikichi T, Kohda T, Kaneko-Ishino T, Ishino F (2003) Imprinting regulation of the murine Meg1/Grb10, human GRB10 genes; roles of brain-specific promoters and mouse-specific CTCF-binding sites. Nucleic Acids Res 31:1398–1406PubMedCrossRefGoogle Scholar
  39. Holohan EE, Kwong C, Adryan B et al (2007) CTCF genomic binding sites in Drosophila and the organisation of the bithorax complex. PLoS Genet 3:e112PubMedCrossRefGoogle Scholar
  40. Horsfield JA, Anagnostou SH, Hu JK et al (2007) Cohesin-dependent regulation of Runx genes. Development 134:2639–2649PubMedCrossRefGoogle Scholar
  41. Hou F, Zou H (2005) Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol Biol Cell 16:3908–3918PubMedCrossRefGoogle Scholar
  42. Ishihara K, Oshimura M, Nakao M (2006) CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol Cell 23:733–742PubMedCrossRefGoogle Scholar
  43. Kanduri C, Pant V, Loukinov D et al (2000) Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 10:853–856PubMedCrossRefGoogle Scholar
  44. Kim TH, Abdullaev ZK, Smith AD et al (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231–1245PubMedCrossRefGoogle Scholar
  45. Koch B, Kueng S, Ruckenbauer C, Wendt KS, Peters JM (2008) The Suv39h-HP1 histone methylation pathway is dispensable for enrichment and protection of cohesin at centromeres in mammalian cells. Chromosoma 117:199–210PubMedCrossRefGoogle Scholar
  46. Krantz ID, McCallum J, DeScipio C et al (2004) Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet 36:631–635PubMedCrossRefGoogle Scholar
  47. Kueng S, Hegemann B, Peters BH et al (2006) Wapl controls the dynamic association of cohesin with chromatin. Cell 127:955–967PubMedCrossRefGoogle Scholar
  48. Kurukuti S, Tiwari VK, Tavoosidana G et al (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A 103:10684–10689PubMedCrossRefGoogle Scholar
  49. Lengronne A, Katou Y, Mori S et al (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573–578PubMedCrossRefGoogle Scholar
  50. Lobanenkov VV, Nicolas RH, Adler VV et al (1990) A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5′-flanking sequence of the chicken c-myc gene. Oncogene 5:1743–1753PubMedGoogle Scholar
  51. Losada A, Hirano M, Hirano T (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12:1986–1997PubMedCrossRefGoogle Scholar
  52. Losada A, Yokochi T, Hirano T (2005) Functional contribution of Pds5 to cohesin-mediated cohesion in human cells and Xenopus egg extracts. J Cell Sci 118:2133–2141PubMedCrossRefGoogle Scholar
  53. Loukinov DI, Pugacheva E, Vatolin S et al (2002) BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci U S A 99:6806–6811PubMedCrossRefGoogle Scholar
  54. Misulovin Z, Schwartz YB, Li XY et al (2008) Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 117:89–102PubMedCrossRefGoogle Scholar
  55. Moon H, Filippova G, Loukinov D et al (2005) CTCF is conserved from Drosophila to humans, confers enhancer blocking of the Fab-8 insulator. EMBO Rep 6:165–170PubMedCrossRefGoogle Scholar
  56. Murrell A, Heeson S, Reik W (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2, H19 into parent-specific chromatin loops. Nat Genet 36:889–893PubMedCrossRefGoogle Scholar
  57. Musio A, Selicorni A, Focarelli ML et al (2006) X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet 38:528–530PubMedCrossRefGoogle Scholar
  58. Ohlsson R, Renkawitz R, Lobanenkov V (2001) CTCF is a uniquely versatile transcription regulator linked to epigenetics, disease. Trends Genet 17:520–527PubMedCrossRefGoogle Scholar
  59. Pant V, Kurukuti S, Pugacheva E et al (2004) Mutation of a single CTCF target site within the H19 imprinting control region leads to loss of Igf2 imprinting, complex patterns of de novo methylation upon maternal inheritance. Mol Cell Biol 24:3497–3504PubMedCrossRefGoogle Scholar
  60. Parelho V, Hadjur S, Spivakov M et al (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132:422–433PubMedCrossRefGoogle Scholar
  61. Pauli A, Althoff F, Oliveira RA et al (2008) Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev Cell 14:239–251PubMedCrossRefGoogle Scholar
  62. Peters JM, Schmitz J, Tedeschi A (2008) The cohesin complex and its roles in chromosome biology. Genes Dev 22:3089–114PubMedCrossRefGoogle Scholar
  63. Rankin S, Ayad NG, Kirschner MW (2005) Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Mol Cell 18:185–200PubMedCrossRefGoogle Scholar
  64. Recillas-Targa F, Bell AC, Felsenfeld G (1999) Positional enhancer-blocking activity of the chicken beta-globin insulator in transiently transfected cells. Proc Natl Acad Sci U S A 96:14354–14359PubMedCrossRefGoogle Scholar
  65. Rollins RA, Morcillo P, Dorsett D (1999) Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152:577–593PubMedGoogle Scholar
  66. Rollins RA, Korom M, Aulner N, Martens A, Dorsett D (2004) Drosophila nipped-B protein supports sister chromatid cohesion and opposes the stromalin/Scc3 cohesion factor to facilitate long-range activation of the cut gene. Mol Cell Biol 24:3100–3111PubMedCrossRefGoogle Scholar
  67. Rubio ED, Reiss DJ, Welcsh PL et al (2008) CTCF physically links cohesin to chromatin. Proc Natl Acad Sci U S A 105:8309–8314PubMedCrossRefGoogle Scholar
  68. Saitoh N, Bell AC, Recillas-Targa F et al (2000) Structural and functional conservation at the boundaries of the chicken beta-globin domain. EMBO J 19:2315–2322PubMedCrossRefGoogle Scholar
  69. Schmitz J, Watrin E, Lenart P, Mechtler K, Peters JM (2007) Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr Biol 17:630–636PubMedCrossRefGoogle Scholar
  70. Schuldiner O, Berdnik D, Levy JM et al (2008) piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev Cell 14:227–238PubMedCrossRefGoogle Scholar
  71. Schule B, Oviedo A, Johnston K, Pai S, Francke U (2005) Inactivating mutations in ESCO2 cause SC phocomelia, Roberts syndrome: no phenotype–genotype correlation. Am J Hum Genet 77:1117–1128PubMedCrossRefGoogle Scholar
  72. Skibbens RV, Maradeo M, Eastman L (2007) Fork it over: the cohesion establishment factor Ctf7p, DNA replication. J Cell Sci 120:2471–2477PubMedCrossRefGoogle Scholar
  73. Splinter E, Heath H, Kooren J et al (2006) CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev 20:2349–2354PubMedCrossRefGoogle Scholar
  74. Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM (2008) Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J 27:654–666PubMedCrossRefGoogle Scholar
  75. Sumara I, Vorlaufer E, Gieffers C, Peters BH, Peters JM (2000) Characterization of vertebrate cohesin complexes and their regulation in prophase. J Cell Biol 151:749–762PubMedCrossRefGoogle Scholar
  76. Takagi S, Benard C, Pak J, Livingstone D, Hekimi S (1997) Cellular, axonal migrations are misguided along both body axes in the maternal-effect mau-2 mutants of Caenorhabditis elegans. Development 124:5115–5126PubMedGoogle Scholar
  77. Tomkins D, Hunter A, Roberts M (1979) Cytogenetic findings in Roberts-SC phocomelia syndrome(s). Am J Med Genet 4:17–26PubMedCrossRefGoogle Scholar
  78. Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T (2004a) NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins, fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36:636–641PubMedCrossRefGoogle Scholar
  79. Tonkin ET, Smith M, Eichhorn P et al (2004b) A giant novel gene undergoing extensive alternative splicing is severed by a Cornelia de Lange-associated translocation breakpoint at 3q263. Hum Genet 115:139–148PubMedCrossRefGoogle Scholar
  80. Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K (1999) Yeast cohesin complex requires a conserved protein Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13:320–333PubMedCrossRefGoogle Scholar
  81. Tremblay KD, Saam JR, Ingram RS, Tilghman SM, Bartolomei MS (1995) A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet 9:407–413PubMedCrossRefGoogle Scholar
  82. Tremblay KD, Duran KL, Bartolomei MS (1997) A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol Cell Biol 17:4322–4329PubMedGoogle Scholar
  83. Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103:375–386PubMedCrossRefGoogle Scholar
  84. Unal E, Heidinger-Pauli JM, Kim W et al (2008) A molecular determinant for the establishment of sister chromatid cohesion. Science 321:566–569PubMedCrossRefGoogle Scholar
  85. Vega H, Waisfisz Q, Gordillo M et al (2005) Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 37:468–470PubMedCrossRefGoogle Scholar
  86. Verni F, Gandhi R, Goldberg ML, Gatti M (2000) Genetic, molecular analysis of wings apart-like (wapl), a gene controlling heterochromatin organization in Drosophila melanogaster. Genetics 154:1693–1710PubMedGoogle Scholar
  87. Waizenegger IC, Hauf S, Meinke A, Peters JM (2000) Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410PubMedCrossRefGoogle Scholar
  88. Wallace JA, Felsenfeld G (2007) We gather together: insulators, genome organization. Curr Opin Genet Dev 17:400–407PubMedCrossRefGoogle Scholar
  89. Wan LB, Pan H, Hannenhalli S et al (2008) Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development. Development 135:2729–2738PubMedCrossRefGoogle Scholar
  90. Wendt KS, Yoshida K, Itoh T et al (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451:796–801PubMedCrossRefGoogle Scholar
  91. Xie X, Mikkelsen TS, Gnirke A, Lindblad-Toh K, Kellis M, Lander ES (2007) Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc Natl Acad Sci U S A 104:7145–7150PubMedCrossRefGoogle Scholar
  92. Yahata K, Maeshima K, Sone T et al (2007) cHS4 insulator-mediated alleviation of promoter interference during cell based expression of tandemly associated transgenes. JMB: in pressGoogle Scholar
  93. Yoon B, Herman H, Hu B et al (2005) Rasgrf1 imprinting is regulated by a CTCF-dependent methylation-sensitive enhancer blocker. Mol Cell Biol 25:11184–11190PubMedCrossRefGoogle Scholar
  94. Yoon YS, Jeong S, Rong Q, Park KY, Chung JH, Pfeifer K (2007) Analysis of the H19ICR insulator. Mol Cell Biol 27:3499–3510PubMedCrossRefGoogle Scholar
  95. Zhang B, Jain S, Song H et al (2007) Mice lacking sister chromatid cohesion protein PDS5B exhibit developmental abnormalities reminiscent of Cornelia de Lange syndrome. Development 134:3191–3201PubMedCrossRefGoogle Scholar
  96. Zhang J, Shi X, Li Y et al (2008) Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell 31:143–151PubMedCrossRefGoogle Scholar
  97. Zhao H, Dean A (2004) An insulator blocks spreading of histone acetylation, interferes with RNA polymerase II transfer between an enhancer and gene. Nucleic Acids Res 32:4903–4919PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Research Institute of Molecular Pathology (IMP)ViennaAustria

Personalised recommendations