Chromosome Research

, Volume 17, Issue 2, pp 229–238 | Cite as

Heterochromatin and the cohesion of sister chromatids



Heterochromatin, once thought to be the useless junk of chromosomes, is now known to play significant roles in biology. Underlying much of this newfound fame are links between the repressive chromatin structure and cohesin, the protein complex that mediates sister chromatid cohesion. Heterochromatin-mediated recruitment and retention of cohesin to domains flanking centromeres promotes proper attachment of chromosomes to the mitotic and meiotic spindles. Heterochromatin assembled periodically between convergently transcribed genes also recruits cohesin, which promotes a novel form of transcription termination. Heterochromatin-like structures in budding yeast also recruit cohesin. Here the complex appears to regulate transcriptional silencing and recombination between repeated DNA sequences. The link between heterochromatin and cohesin is particularly relevant to human health. In Roberts-SC phocomelia syndrome, heterochromatic cohesion is selectively lost due to mutation of the acetyltransferase responsible for cohesin activation. In this review I discuss recent work that relates to these relationships between heterochromatin and cohesin.


cohesin Swi6 HP1 pericentric heterochromatin Sir proteins Transcriptional silencing silent chromatin 



cohesin-associated region


CCCTC-binding protein


lysine 9 of histone H3


heterochromatin protein of higher eukaryotes


Roberts-SC phocomelia syndrome


silent information regulator


a homologue of HP1


tRNA gene


ribosomal RNA gene


  1. Bailis JM, Bernard P, Antonelli R, Allshire RC, Forsburg SL (2003) Hsk1-Dfp1 is required for heterochromatin-mediated cohesion at centromeres. Nat Cell Biol 5:1111–1116PubMedCrossRefGoogle Scholar
  2. Bausch C, Noone S, Henry JM et al (2007) Transcription alters chromosomal locations of cohesin in Saccharomyces cerevisiae. Mol Cell Biol 27:8522–8532PubMedCrossRefGoogle Scholar
  3. Ben-Shahar TR, Heeger S, Lehane C et al (2008) Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321:563–566PubMedCrossRefGoogle Scholar
  4. Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–2542PubMedCrossRefGoogle Scholar
  5. Buhler M, Moazed D (2007) Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol 14:1041–1048PubMedCrossRefGoogle Scholar
  6. Chang CR, Wu CS, Hom Y, Gartenberg MR (2005) Targeting of cohesin by transcriptionally silent chromatin. Genes Dev 19:3031–3042PubMedCrossRefGoogle Scholar
  7. Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, Grewal SI (2008) Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451:734–737PubMedCrossRefGoogle Scholar
  8. D’Ambrosio C, Schmidt CK, Katou Y et al (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22:2215–2227PubMedCrossRefGoogle Scholar
  9. Dai J, Sullivan BA, Higgins JM (2006) Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev Cell 11:741–750PubMedCrossRefGoogle Scholar
  10. Donze D, Kamakaka RT (2001) RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J 20:520–531PubMedCrossRefGoogle Scholar
  11. Donze D, Adams CR, Rine J, Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13:698–708PubMedCrossRefGoogle Scholar
  12. Dorsett D (2007) Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes. Chromosoma 116:1–13PubMedCrossRefGoogle Scholar
  13. Dubey RN, Gartenberg MR (2007) A tDNA establishes cohesion of a neighboring silent chromatin domain. Genes Dev 21:2150–2160PubMedCrossRefGoogle Scholar
  14. Eckert CA, Gravdahl DJ, Megee PC (2007) The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension. Genes Dev 21:278–291PubMedCrossRefGoogle Scholar
  15. Fischle W, Tseng BS, Dormann HL et al (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122PubMedCrossRefGoogle Scholar
  16. Gause M, Schaaf CA, Dorsett D (2008) Cohesin and CTCF: cooperating to control chromosome conformation? Bioessays 30:715–718PubMedCrossRefGoogle Scholar
  17. Glynn EF, Megee PC, Yu HG et al (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259PubMedCrossRefGoogle Scholar
  18. Gordillo M, Vega H, Trainer AH et al (2008) The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Hum Mol Genet 17:2172–2180PubMedCrossRefGoogle Scholar
  19. Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46PubMedCrossRefGoogle Scholar
  20. Gruber S, Haering CH, Nasmyth K (2003) Chromosomal cohesin forms a ring. Cell 112:765–777PubMedCrossRefGoogle Scholar
  21. Gullerova M, Proudfoot NJ (2008) Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132:983–995PubMedCrossRefGoogle Scholar
  22. Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K (2008) The cohesin ring concatenates sister DNA molecules. Nature 454:297–301PubMedCrossRefGoogle Scholar
  23. Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–1180PubMedCrossRefGoogle Scholar
  24. Hou F, Chu CW, Kong X, Yokomori K, Zou H (2007) The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner. J Cell Biol 177:587–597PubMedCrossRefGoogle Scholar
  25. Ivanov D, Nasmyth K (2005) A topological interaction between cohesin rings and a circular minichromosome. Cell 122:849–860PubMedCrossRefGoogle Scholar
  26. Ivanov D, Schleiffer A, Eisenhaber F, Mechtler K, Haering CH, Nasmyth K (2002) Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol 12:323–328PubMedCrossRefGoogle Scholar
  27. Johanson K, Johanson J (2006) Regulation of chromosome structure by histone H3S10 phosphorylation. Chromosome Res 14:393–404CrossRefGoogle Scholar
  28. Kitajima TS, Yokobayashi S, Yamamoto M, Watanabe Y (2003) Distinct cohesin complexes organize meiotic chromosome domains. Science 300:1152–1155PubMedCrossRefGoogle Scholar
  29. Kitajima TS, Sakuno T, Ishiguro K et al (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441:46–52PubMedCrossRefGoogle Scholar
  30. Kobayashi T, Ganley AR (2005) Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309:1581–1584PubMedCrossRefGoogle Scholar
  31. Kobayashi T, Horiuchi T, Tongaonkar P, Vu L, Nomura M (2004) SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell 117:441–453PubMedCrossRefGoogle Scholar
  32. Koch B, Kueng S, Ruckenbauer C, Wendt KS, Peters JM (2008) The Suv39h-HP1 histone methylation pathway is dispensable for enrichment and protection of cohesin at centromeres in mammalian cells. Chromosoma 117:199–210PubMedCrossRefGoogle Scholar
  33. Laloraya S, Guacci V, Koshland D (2000) Chromosomal address of the cohesion component Mcd1p. J Cell Biol 151:1047–1056PubMedCrossRefGoogle Scholar
  34. Lau A, Blitzblau H, Bell SP (2002) Cell-cycle control of the establishment of mating-type silencing in S. cerevisiae. Genes Dev 16:2935–2945CrossRefGoogle Scholar
  35. Lengronne A, Katou Y, Mori S et al (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573–578PubMedCrossRefGoogle Scholar
  36. Lieb JD, Liu X, Botstein D, Brown PO (2001) Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 28:327–334PubMedCrossRefGoogle Scholar
  37. McNairn AJ, Gerton JL (2008) The chromosome glue gets a little stickier. Trends Genet 24:382–389PubMedCrossRefGoogle Scholar
  38. Misulovin Z, Schwartz YB, Li XY et al (2008) Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 117:89–102PubMedCrossRefGoogle Scholar
  39. Noma K, Cam HP, Maraia RJ, Grewal SI (2006) A role for TFIIIC transcription factor complex in genome organization. Cell 125:859–872PubMedCrossRefGoogle Scholar
  40. Nonaka N, Kitajima T, Yokobayashi S et al (2002) Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol 4:89–93PubMedCrossRefGoogle Scholar
  41. Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE (2008) Sister chromatid cohesion: a simple concept with a complex reality. Ann Rev Cell Dev Biol 24:105–129CrossRefGoogle Scholar
  42. Parelho V, Hadjur S, Spivakov M et al (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132:422–433PubMedCrossRefGoogle Scholar
  43. Pasero P, Bensimon A, Schwob E (2002) Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev 16:2479–2484PubMedCrossRefGoogle Scholar
  44. Peng JC, Karpen GH (2008) Epigenetic regulation of heterochromatic DNA stability. Curr Opin Genet Dev 18:204–211PubMedCrossRefGoogle Scholar
  45. Riedel CG, Katis VL, Katou Y et al (2006) Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441:53–61PubMedCrossRefGoogle Scholar
  46. Rusché LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:481–516PubMedCrossRefGoogle Scholar
  47. Sauve AA, Wolberger C, Schramm VL, Boeke JD (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465PubMedCrossRefGoogle Scholar
  48. Schüle B, Oviedo A, Johnston K, Pai S, Francke U (2005) Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation. Am J Hum Genet 77:1117–1128PubMedCrossRefGoogle Scholar
  49. Takata H, Matsunaga S, Morimoto A et al (2007) PHB2 protects sister-chromatid cohesion in mitosis. Curr Biol 17:1356–1361PubMedCrossRefGoogle Scholar
  50. Tanaka TU, Stark MJ, Tanaka K (2005) Kinetochore capture and bi-orientation on the mitotic spindle. Nat Rev Mol Cell Biol 6:929–942PubMedCrossRefGoogle Scholar
  51. Unal E, Heidinger-Pauli JM, Kim W et al (2008) A molecular determinant for the establishment of sister chromatid cohesion. Science 321:566–569PubMedCrossRefGoogle Scholar
  52. Van Den Berg DJ, Francke U (1993) Roberts syndrome: a review of 100 cases and a new rating system for severity. Am J Med Genet 47:1104–1123CrossRefGoogle Scholar
  53. Vega H, Waisfisz Q, Gordillo M et al (2005) Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 37:468–470PubMedCrossRefGoogle Scholar
  54. Venkatasubrahmanyam S, Hwang WW, Meneghini MD, Tong AH, Madhani HD (2007) Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z. Proc Natl Acad Sci U S A 104:16609–16614PubMedCrossRefGoogle Scholar
  55. Wendt KS, Yoshida K, Itoh T et al (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451:796–801PubMedCrossRefGoogle Scholar
  56. Yamagishi Y, Sakuno T, Shimura M, Watanabe Y (2008) Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 455:251–255PubMedCrossRefGoogle Scholar
  57. Zhang J, Shi X, Li Y et al (2008) Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell 31:143–151PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Pharmacology, Robert Wood Johnson Medical SchoolUniversity of Medicine and Dentistry of New JerseyPiscatawayUSA

Personalised recommendations