Chromosome Research

, Volume 17, Issue 2, pp 215–227 | Cite as

C. elegans dosage compensation: A window into mechanisms of domain-scale gene regulation

  • Sevinc ErcanEmail author
  • Jason D. Lieb


The C. elegans dosage compensation complex (DCC) reduces transcript levels from each of the two hermaphrodite X chromosomes to equalize X-linked gene expression to that of XO males. Several of the proteins that comprise the DCC are homologous to subunits of the evolutionarily conserved condensin complexes, which in most organisms function in mitotic and meiotic chromosome condensation. These include the DCC subunits MIX-1 and DPY-27, which belong to the structural maintenance of chromosomes (SMC) family of proteins. Several of the C. elegans DCC subunits also perform double duty as members of the canonical meiotic and mitotic condensin complexes. Here, we review what is known about the C. elegans DCC and how study of this model might shed light on general mechanisms of domain-scale transcriptional regulation. We discuss how condensin-like complexes may be targeted to specific chromosomal locations for performance of their functions.


dosage compensation condensin transcription C. elegans domain-scale gene regulation 



chromatin immunoprecipitation


complex of proteins associated with Set1


dosage compensation complex


Huntingtin, Elongation Factor 3, PR65/A, TOR


recruitment element on X


structural maintenance of chromosomes



Sevinc Ercan is supported by National Institutes of Health under Ruth L. Kirschstein National Research Service Award GM084471.


  1. Alekseyenko AA, Peng S, Larschan E et al (2008) A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 134:599–609PubMedCrossRefGoogle Scholar
  2. Anderson DE, Losada A, Erickson HP, Hirano T (2002) Condensin and cohesin display different arm conformations with characteristic hinge angles. J Cell Biol 156:419–424PubMedCrossRefGoogle Scholar
  3. Bausch C, Noone S, Henry JM et al (2007) Transcription alters chromosomal locations of cohesin in Saccharomyces cerevisiae. Mol Cell Biol 27:8522–8532PubMedCrossRefGoogle Scholar
  4. Beenders B, Watrin E, Legagneux V, Kireev I, Bellini M (2003) Distribution of XCAP-E and XCAP-D2 in the Xenopus oocyte nucleus. Chromosome Res 11:549–564PubMedCrossRefGoogle Scholar
  5. Bhalla N, Biggins S, Murray AW (2002) Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior. Mol Biol Cell 13:632–645PubMedCrossRefGoogle Scholar
  6. Blewitt ME, Gendrel AV, Pang Z et al (2008) SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat Genet 40:663–9PubMedCrossRefGoogle Scholar
  7. Brown CJ, Ballabio A, Rupert JL et al (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44PubMedCrossRefGoogle Scholar
  8. Cabello OA, Eliseeva E, He WG et al (2001) Cell cycle-dependent expression and nucleolar localization of hCAP-H. Mol Biol Cell 12:3527–3537PubMedGoogle Scholar
  9. Chu DS, Dawes HE, Lieb JD, Chan RC, Kuo AF, Meyer BJ (2002) A molecular link between gene-specific and chromosome-wide transcriptional repression. Genes Dev 16:796–805PubMedCrossRefGoogle Scholar
  10. Chuang PT, Albertson DG, Meyer BJ (1994) DPY-27:a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79:459–474PubMedCrossRefGoogle Scholar
  11. Chuang PT, Lieb JD, Meyer BJ (1996) Sex-specific assembly of a dosage compensation complex on the nematode X chromosome. Science 274:1736–1739PubMedCrossRefGoogle Scholar
  12. Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Nasmyth K (2000) Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5:243–254PubMedCrossRefGoogle Scholar
  13. Cobbe N, Savvidou E, Heck MM (2006) Diverse mitotic and interphase functions of condensins in Drosophila. Genetics 172:991–1008PubMedCrossRefGoogle Scholar
  14. Csankovszki G, McDonel P, Meyer BJ (2004) Recruitment and spreading of the C. elegans dosage compensation complex along X chromosomes. Science 303:1182–1185PubMedCrossRefGoogle Scholar
  15. Csankovszki G, Collette K, Spahl K, Carey J, Snyder M, Petty E, Patel U, Tabuchi T, Liu H, McLeod I, Thompson J, Sarkesik A, Yates J, Meyer BJ, Hagstrom K (2008) Three distinct condensin complexes control C. elegans chromosome dynamics. Curr Biol Epub. PMID: 19119011Google Scholar
  16. D’Ambrosio C, Schmidt CK, Katou Y et al (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22:2215–2227PubMedCrossRefGoogle Scholar
  17. Davis TL, Meyer BJ (1997) SDC-3 coordinates the assembly of a dosage compensation complex on the nematode X chromosome. Development 124:1019–1031PubMedGoogle Scholar
  18. Dawes HE, Berlin DS, Lapidus DM, Nusbaum C, Davis TL, Meyer BJ (1999) Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate. Science 284:1800–1804PubMedCrossRefGoogle Scholar
  19. Dej KJ, Ahn C, Orr-Weaver TL (2004) Mutations in the Drosophila condensin subunit dCAP-G: defining the role of condensin for chromosome condensation in mitosis and gene expression in interphase. Genetics 168:895–906PubMedCrossRefGoogle Scholar
  20. DeLong L, Casson LP, Meyer BJ (1987) Assessment of X chromosome dosage compensation in Caenorhabditis elegans by phenotypic analysis of lin-14. Genetics 117:657–670PubMedGoogle Scholar
  21. DeLong L, Plenefisch JD, Klein RD, Meyer BJ (1993) Feedback control of sex determination by dosage compensation revealed through Caenorhabditis elegans sdc-3 mutations. Genetics 133:875–896PubMedGoogle Scholar
  22. Dorsett D (2009) Cohesin, gene expression and development: lessons from Drosophila. doi: 10.1007/s10577-009-9021-6
  23. Ercan S, Giresi PG, Whittle CM, Zhang X, Green RD, Lieb JD (2007) X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation. Nat Genet 39:403–408PubMedCrossRefGoogle Scholar
  24. Freeman L, Aragon-Alcaide L, Strunnikov A (2000) The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149:811–824PubMedCrossRefGoogle Scholar
  25. Gilfillan GD, Konig C, Dahlsveen IK et al (2007) Cumulative contributions of weak DNA determinants to targeting the Drosophila dosage compensation complex. Nucleic Acids Res 35:3561–3572PubMedCrossRefGoogle Scholar
  26. Glynn EF, Megee PC, Yu HG et al (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259PubMedCrossRefGoogle Scholar
  27. Hagstrom KA, Holmes VF, Cozzarelli NR, Meyer BJ (2002) C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev 16:729–742PubMedCrossRefGoogle Scholar
  28. Handwerger KE, Gall JG (2006) Subnuclear organelles: new insights into form and function. Trends Cell Biol 16:19–26PubMedCrossRefGoogle Scholar
  29. Hodgkin J (1980) More sex-determination mutants of Caenorhabditis elegans. Genetics 96:649–664PubMedGoogle Scholar
  30. Hodgkin JA, Brenner S (1977) Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics 86:275–287PubMedGoogle Scholar
  31. Hsu DR, Meyer BJ (1994) The dpy-30 gene encodes an essential component of the Caenorhabditis elegans dosage compensation machinery. Genetics 137:999–1018PubMedGoogle Scholar
  32. Hsu DR, Chuang PT, Meyer BJ (1995) DPY-30, a nuclear protein essential early in embryogenesis for Caenorhabditis elegans dosage compensation. Development 121:3323–3334PubMedGoogle Scholar
  33. Johzuka K, Horiuchi T (2007) RNA polymerase I transcription obstructs condensin association with 35S rRNA coding regions and can cause contraction of long repeat in Saccharomyces cerevisiae. Genes Cells 12:759–771PubMedGoogle Scholar
  34. Kimura K, Hirano T (1997) ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90:625–634PubMedCrossRefGoogle Scholar
  35. Klein RD, Meyer BJ (1993) Independent domains of the Sdc-3 protein control sex determination and dosage compensation in C. elegans. Cell 72:349–364PubMedCrossRefGoogle Scholar
  36. Komura J, Ono T (2005) Disappearance of nucleosome positioning in mitotic chromatin in vivo. J Biol Chem 280:14530–14535PubMedCrossRefGoogle Scholar
  37. Lee CK, Shibata Y, Rao B, Strahl BD, Lieb JD (2004) Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 36:900–905PubMedCrossRefGoogle Scholar
  38. Lengronne A, Katou Y, Mori S et al (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573–578PubMedCrossRefGoogle Scholar
  39. Lieb JD, Capowski EE, Meneely P, Meyer BJ (1996) DPY-26, a link between dosage compensation and meiotic chromosome segregation in the nematode. Science 274:1732–1736PubMedCrossRefGoogle Scholar
  40. Lieb JD, Albrecht MR, Chuang PT, Meyer BJ (1998) MIX-1: an essential component of the C. elegans mitotic machinery executes X chromosome dosage compensation. Cell 92:265–277PubMedCrossRefGoogle Scholar
  41. Liu X, Lee CK, Granek JA, Clarke ND, Lieb JD (2006) Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome Res 16:1517–1528PubMedCrossRefGoogle Scholar
  42. Longworth MS, Herr A, Ji JY, Dyson NJ (2008) RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3. Genes Dev 22:1011–1024PubMedCrossRefGoogle Scholar
  43. Losada A, Hirano T (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19:1269–1287PubMedCrossRefGoogle Scholar
  44. Lucchesi JC (1998) Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation. Curr Opin Genet Dev 8:179–184PubMedCrossRefGoogle Scholar
  45. Lupo R, Breiling A, Bianchi ME, Orlando V (2001) Drosophila chromosome condensation proteins Topoisomerase II and Barren colocalize with Polycomb and maintain Fab-7 PRE silencing. Mol Cell 7:127–136PubMedCrossRefGoogle Scholar
  46. Machin F, Paschos K, Jarmuz A, Torres-Rosell J, Pade C, Aragon L (2004) Condensin regulates rDNA silencing by modulating nucleolar Sir2p. Curr Biol 14:125–130PubMedGoogle Scholar
  47. McDonel P, Jans J, Peterson BK, Meyer BJ (2006) Clustered DNA motifs mark X chromosomes for repression by a dosage compensation complex. Nature 444:614–618PubMedCrossRefGoogle Scholar
  48. Meneely PM, Wood WB (1984) An autosomal gene that affects X chromosome expression and sex determination in Caenorhabditis elegans. Genetics 106:29–44PubMedGoogle Scholar
  49. Meneely PM, Wood WB (1987) Genetic analysis of X-chromosome dosage compensation in Caenorhabditis elegans. Genetics 117:25–41PubMedGoogle Scholar
  50. Meyer BJ, Casson LP (1986) Caenorhabditis elegans compensates for the difference in X chromosome dosage between the sexes by regulating transcript levels. Cell 47:871–881PubMedCrossRefGoogle Scholar
  51. Miller T, Krogan NJ, Dover J et al (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A 98:12902–12907PubMedCrossRefGoogle Scholar
  52. Nagy PL, Griesenbeck J, Kornberg RD, Cleary ML (2002) A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc Natl Acad Sci U S A 99:90–94PubMedCrossRefGoogle Scholar
  53. Nusbaum C, Meyer BJ (1989) The Caenorhabditis elegans gene sdc-2 controls sex determination and dosage compensation in XX animals. Genetics 122:579–593PubMedGoogle Scholar
  54. Onn I, Aono N, Hirano M, Hirano T (2007) Reconstitution and subunit geometry of human condensin complexes. EMBO J 26:1024–1034PubMedCrossRefGoogle Scholar
  55. Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121PubMedCrossRefGoogle Scholar
  56. Ono T, Fang Y, Spector DL, Hirano T (2004) Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell 15:3296–3308PubMedCrossRefGoogle Scholar
  57. Parvin JD, Sharp PA (1993) DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 73:533–540PubMedCrossRefGoogle Scholar
  58. Platani M, Goldberg I, Lamond AI, Swedlow JR (2002) Cajal body dynamics and association with chromatin are ATP-dependent. Nat Cell Biol 4:502–508PubMedCrossRefGoogle Scholar
  59. Plenefisch JD, DeLong L, Meyer BJ (1989) Genes that implement the hermaphrodite mode of dosage compensation in Caenorhabditis elegans. Genetics 121:57–76PubMedGoogle Scholar
  60. Shilatifard A (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20:341–348PubMedCrossRefGoogle Scholar
  61. Simonet T, Dulermo R, Schott S, Palladino F (2007) Antagonistic functions of SET-2/SET1 and HPL/HP1 proteins in C. elegans development. Dev Biol 312:367–383PubMedCrossRefGoogle Scholar
  62. Smith ER, Allis CD, Lucchesi JC (2001) Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J Biol Chem 276:31483–31486PubMedCrossRefGoogle Scholar
  63. Straub T, Becker PB (2007) Dosage compensation: the beginning and end of generalization. Nat Rev Genet 8:47–57PubMedCrossRefGoogle Scholar
  64. Takahashi T, Tanaka H, Iguchi N et al (2004) Rosbin: a novel homeobox-like protein gene expressed exclusively in round spermatids. Biol Reprod 70:1485–1492PubMedCrossRefGoogle Scholar
  65. Trent C, Tsuing N, Horvitz HR (1983) Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104:619–647PubMedGoogle Scholar
  66. Trent C, Purnell B, Gavinski S, Hageman J, Chamblin C, Wood WB (1991) Sex-specific transcriptional regulation of the C. elegans sex-determining gene her-1. Mech Dev 34:43–55PubMedCrossRefGoogle Scholar
  67. Tsai CJ, Mets DG, Albrecht MR, Nix P, Chan A, Meyer BJ (2008) Meiotic crossover number and distribution are regulated by a dosage compensation protein that resembles a condensin subunit. Genes Dev 22:194–211PubMedCrossRefGoogle Scholar
  68. Tsang CK, Li H, Zheng XS (2007a) Nutrient starvation promotes condensin loading to maintain rDNA stability. EMBO J 26:448–458PubMedCrossRefGoogle Scholar
  69. Tsang CK, Wei Y, Zheng XF (2007b) Compacting DNA during the interphase: condensin maintains rDNA integrity. Cell Cycle 6:2213–2218PubMedGoogle Scholar
  70. Uzbekov R, Timirbulatova E, Watrin E et al (2003) Nucleolar association of pEg7 and XCAP-E, two members of Xenopus laevis condensin complex in interphase cells. J Cell Sci 116:1667–1678PubMedCrossRefGoogle Scholar
  71. Vermeulen M, Mulder KW, Denissov S et al (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131:58–69PubMedCrossRefGoogle Scholar
  72. Villeneuve AM, Meyer BJ (1987) sdc-1: a link between sex determination and dosage compensation in C. elegans. Cell 48:25–37PubMedCrossRefGoogle Scholar
  73. Wang BD, Eyre D, Basrai M, Lichten M, Strunnikov A (2005) Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Mol Cell Biol 25:7216–7225PubMedCrossRefGoogle Scholar
  74. Wang BD, Butylin P, Strunnikov A (2006) Condensin function in mitotic nucleolar segregation is regulated by rDNA transcription. Cell Cycle 5:2260–2267PubMedGoogle Scholar
  75. Xing H, Wilkerson DC, Mayhew CN et al (2005) Mechanism of hsp70i gene bookmarking. Science 307:421–423PubMedCrossRefGoogle Scholar
  76. Xu Y, Leung CG, Lee DC, Kennedy BK, Crispino JD (2006) MTB, the murine homolog of condensin II subunit CAP-G2, represses transcription and promotes erythroid cell differentiation. Leukemia 20:1261–1269PubMedCrossRefGoogle Scholar
  77. Yonker SA, Meyer BJ (2003) Recruitment of C. elegans dosage compensation proteins for gene-specific versus chromosome-wide repression. Development 130:6519–6532PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Biology and Carolina Center for the Genome Sciences, CB #3280, 406 Fordham HallUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations