Advertisement

Chromosome Research

, Volume 16, Issue 8, pp 1215–1231 | Cite as

Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes

  • P. L. Perelman
  • A. S. Graphodatsky
  • J. W. Dragoo
  • N. A. Serdyukova
  • G. Stone
  • P. Cavagna
  • A. Menotti
  • W. Nie
  • P. C. M. O’Brien
  • J. Wang
  • S. Burkett
  • K. Yuki
  • M. E. Roelke
  • S. J. O’Brien
  • F. Yang
  • R. Stanyon
Article

Abstract

The karyotypic relationships of skunks (Mephitidae) with other major clades of carnivores are not yet established. Here, multi-directional chromosome painting was used to reveal the karyological relationships among skunks and between Mephitidae (skunks) and Procyonidae (raccoons). Representative species from three genera of Mephitidae (Mephitis mephitis, 2n = 50; Mephitis macroura, 2n = 50; Conepatus leuconotus, 2n = 46; Spilogale gracilis, 2n = 60) and one species of Procyonidae (Procyon lotor, 2n = 38) were studied. Chromosomal homology was mapped by hybridization of five sets of whole-chromosome paints derived from stone marten (Martes foina, 2n = 38), cat, skunks (M. mephitis; M. macroura) and human. The karyotype of the raccoon is highly conserved and identical to the hypothetical ancestral musteloid karyotype, suggesting that procyonids have a particular importance for establishing the karyological evolution within the caniforms. Ten fission events and five fusion events are necessary to generate the ancestral skunk karyotype from the ancestral carnivore karyotype. Our results show that Mephitidae joins Canidae and Ursidae as the third family of carnivores that are characterized by a high rate of karyotype evolution. Shared derived chromosomal fusion of stone marten chromosomes 6 and 14 phylogenetically links the American hog-nosed skunk and eastern spotted skunk.

Key words

evolution karyotype Procyonidae raccoon skunk stone marten 

Abbreviations

Animals

 

CLE

Conepatus leuconotus, American hog-nosed skunk

FCA

Felis catus, cat

HSA

Homo sapiens, human

MFO

Martes foina, stone marten

MMA

Mephitis macroura, hooded skunk

MME

Mephitis mephitis, striped skunk

PLO

Procyon lotor, northern raccoon

SGR

Spilogale gracilis, western spotted skunk

Other abbreviations

 

ACK

ancestral carnivore karyotype

AMK

ancestral musteloid karyotype

BAC

bacterial artificial chromosome

C-bands

heterochromatic regions close to the centromeres and regions rich in satellite DNA

Cot-1

fraction of DNA consisting largely of highly repetitive sequences

DAPI

4′,6-diamidino-2-phenylindole

DOP–PCR

degenerate oligonucleotide primer PCR

FACS

fluorescence activated cell sorting

FISH

fluorescent in-situ hybridization

FITC

fluorescein isothiocyanate

G-banding

Giemsa banding

NOR

nucleolar organising region

PBS

phosphate buffered saline

PCR

polymerase chain reaction

SSC

standard saline citrate

Notes

Acknowledgement

Gwen Dragoo provided valuable assistance in obtaining skin biopsies for several of the skunk samples. This study was funded in part by research grants of the Russian Fund for Basic Research, programmes of the Russian Academy of Science: Molecular and Cell Biology, Biosphere Origin and Evolution, Dynamics of Genofunds of Plants, Animals and Human and Integration programme of the Siberian Branch of the Russian Academy of Science (A.S.G.). R.S. was partially supported by a grant ‘Mobility of Italian and foreign researchers residing abroad’ from MIUR. The research of G.S. and MER were supported by the Intramural Research Program of the NIH, NCI, CCR, NCI-Frederick.

References

  1. Arnason U (1977) The relationship between the four principal pinniped karyotypes. Hereditas 87(2): 227–242.PubMedGoogle Scholar
  2. Arnason U (1981) Localization of nucleolar organizing regions in pinniped karyotypes. Hereditas 94(1): 29–34.PubMedGoogle Scholar
  3. Arnason U, Gullberg A, Janke A, Kullberg M (2007) Mitogenomic analyses of caniform relationships. Mol Phylogenet Evol 45(3): 863–874.PubMedCrossRefGoogle Scholar
  4. Benirschke K, Low RJ (1966) Chromosome studies on four carnivores. Mammal Chrom Newsl 21: 148.Google Scholar
  5. Breen M, Thomas R, Binns MM, Carter NP, Langford CF (1999) Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. Genomics 61: 145–155.PubMedCrossRefGoogle Scholar
  6. Bryant HN, Russel AP, Fitch WD (1993) Phylogenetic relationships within the extant Mustelidae (Carnivora): appraisal of the cladistic status of the Simpsonian subfamilies. Zool J Linn Soc 108: 301–334.CrossRefGoogle Scholar
  7. Carter NP, Ferguson-Smith ME, Affara NA, Briggs H, Ferguson-Smith MA (1990) Study of X chromosome abnormality in XX males using bivariate flow karyotype analysis and flow sorted dot blots. Cytometry 11(1): 202–207.PubMedCrossRefGoogle Scholar
  8. Cavagna P, Menotti A, Stanyon R (2000) Genomic homology of the domestic ferret with cats and humans. Mamm Genome 11: 866–870.PubMedCrossRefGoogle Scholar
  9. Dobigny G, Ducroz JF, Robinson TJ, Volobuev V (2004) Cytogenetics and Cladistics. Syst Biol 53(3): 470–484.PubMedCrossRefGoogle Scholar
  10. Dragoo JW, Honeycutt RL (1997) Systematics of mustelid-like carnivores. J Mammal 78(2): 426–443.CrossRefGoogle Scholar
  11. Dragoo JW, Bradley RD, Honeycutt RL, Templeton JW (1993) Phylogenetic relationships among the skunks: a molecular perspective. J Mamm Evol 1: 255–267.CrossRefGoogle Scholar
  12. Dragoo JW, Honeycutt RL, Schmidly DJ (2003) Taxonomic status of white-backed hog-nosed skunks, genus Conepatus (Carnivora: Mephitidae). J Mammal 84: 159–176.CrossRefGoogle Scholar
  13. Dragoo JW, Matthes D, Aragon A, Hass CC, Yates TL (2004) Identification of skunk species submitted for rabies testing in the desert southwest. J Wildlife Dis 40: 371–376.Google Scholar
  14. Flynn JJ, Nedbal MA (1998) Phylogeny of the Carnivora (Mammalia): congruence vs incompatibility among multiple data sets. Mol Phylogenet Evol 9(3): 414–426.PubMedCrossRefGoogle Scholar
  15. Flynn JJ, Nedbal MA, Dragoo JW, Honneycutt RL (2000) Whence the red panda? Mol Phylogenet Evol 17(2): 190–199.PubMedCrossRefGoogle Scholar
  16. Flynn JJ, Finarelli JA, Zehr S, Hsu J, Nedbal MA (2005) Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Syst Biol 54(2): 317–337.PubMedCrossRefGoogle Scholar
  17. Fredga K (1966) Chromosome studies on six species of Mustelidae and one of Procyonidae. Mamm Chromosomes Newsl 21: 145.Google Scholar
  18. Fredga K (1967) Comparative chromosome studies of the family Mustilidae (Carnivora, Mammalia). Hereditas 57: 295.PubMedGoogle Scholar
  19. Frönicke L, Müller-Navia J, Romanakis K, Scherthan H (1997) Zoo-FISH maps of the harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype. Chromosoma 106: 108–113.PubMedCrossRefGoogle Scholar
  20. Frönicke L, Wienberg J, Stone G, Adams L, Stanyon R (2003) Towards the delineation of the ancestral eutherian genome organization: comparative genome maps of human and the African elephant (Loxodonta africana) generated by chromosome painting. Proc R Soc Lond B 270: 1331–1340.CrossRefGoogle Scholar
  21. Fulton TL, Strobeck C (2006) Molecular phylogeny of the Arctoidea (Carnivora): effect of missing data on supertree and supermatrix analyses of multiple gene data sets. Mol Phylogenet Evol 41: 165–181.PubMedCrossRefGoogle Scholar
  22. Genest FB, Morisset P, Patenaud RP (1986) Caryotype de la mouffette rayee, Mephitis mephitis. Genet Sel Evol 18(2): 111–112.CrossRefGoogle Scholar
  23. Graphodatsky AS, Perelman PL, Sokolovskaya NV, Beklemisheva VR, Serdukova NA, Dobigny G, O’Brien SJ, Ferguson-Smith MA, Yang F (2008) Phylogenomics of the dog and fox family (Canidae, Carnivora) revealed by chromosome painting. Chromosome Res 16(1): 129–143.PubMedCrossRefGoogle Scholar
  24. Graphodatsky A, Sharshov A, Ternovsky D, Ternovskaya Yu (1989) Comparative cytogenetics of Mustelidae (Carnivora). Zool Zh 68(12): 96–106.Google Scholar
  25. Graphodatsky AS, Yang F, O’Brien PC et al. (2000a) A comparative chromosome map of the Arctic fox, red fox and dog defined by chromosome painting and high resolution G-banding. Chromosome Res 8: 253–263.CrossRefGoogle Scholar
  26. Graphodatsky AS, Yang F, Serdukova N, Perelman P, Zhdanova N, Ferguson-Smith MA (2000b) Dog chromosome-specific paints reveal evolutionary inter- and intrachromosomal rearrangements in the American mink and human. Cytogenet Cell Genet 90: 275–278.CrossRefGoogle Scholar
  27. Graphodatsky AS, Yang F, O’Brien PCM et al. (2001) Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet Cell Genet 92: 243–247.PubMedCrossRefGoogle Scholar
  28. Graphodatsky AS, Yang F, Perelman P et al. (2002) Comparative molecular cytogenetic studies in the order Carnivora: mapping chromosomal rearrangements onto the phylogenetic tree. Cytogenet Genome Res 96: 137–145.PubMedCrossRefGoogle Scholar
  29. Hameister H, Klett C, Bruch J, Dixkens C, Vogel W, Christensen K (1997) Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chromosome Res 5: 5–11.PubMedCrossRefGoogle Scholar
  30. Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36: 1014–1015.PubMedCrossRefGoogle Scholar
  31. Hsu TC, Arrighi FE (1966) Mammal Chromosomes Newsl 21: 155–159.Google Scholar
  32. Hsu TC, Arrighi FE (1971) Distribution of constitutive heterochromatin in mammalian chromosomes. Chromosoma 34: 243–253.PubMedGoogle Scholar
  33. Hsu TC, Benirschke K (1967) Atlas of Mammalian Chromosomes, vol 1. Berlin, Heidelberg, New York: Springer Verlag.Google Scholar
  34. Hsu TC, Mead RA (1969) Mechanisms of chromosomal changes in mammalian speciation. In: Benirschke K, ed. Comparative Mammalian Cytogenetics New-York: Springer-Verlag, pp. 8–17. http://www.bionet.nsc.ru/chromosomes/.
  35. Hunt RM Jr (1974) The auditory bulla in Carnivora: an anatomical basis for reappraisal of carnivore evolution. J Morphol 143: 21–76.PubMedCrossRefGoogle Scholar
  36. Koepfli KP, Deere KA, Slater GJ et al. (2008) Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol 6: 10.PubMedCrossRefGoogle Scholar
  37. Ledje C, Arnason U (1996a) Phylogenetic analyses of complete cytochrome b genes of the order Carnivora with particular emphasis on the Caniformia. J Mol Evol 42: 135–144.CrossRefGoogle Scholar
  38. Ledje C, Arnason U (1996b) Phylogenetic relationships within caniform carnivores based on analyses of the mitochondrial 12S rRNA gene. J Mol Evol 43: 641–649.CrossRefGoogle Scholar
  39. Lee MR, Modi WS (1983) Chromosomes of Spilogale pigmae and S. putorius leucoparia. J Mammal 64(3): 493–495.CrossRefGoogle Scholar
  40. Maden BE, Dent CL, Farrell TE, Garde J, McCallum FS, Wakeman JA (1987) Clones of human ribosomal DNA containing the complete 18 S-rRNA and 28 S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones. Biochem J 246(2): 519–527.PubMedGoogle Scholar
  41. Mao X, Nie W, Wang J, Su W, Feng Q, Wang Y, Dobigny G, Yang F (2008) Comparative cytogenetics of bats (Chiroptera): the prevalence of Robertsonian translocations limits the power of chromosomal characters in resolving interfamily phylogenetic relationships. Chromosome Res 16(1): 155–170.PubMedCrossRefGoogle Scholar
  42. Murphy WJ, Stanyon R, O’Brien SJ (2001) Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol 2(6): 1–8.CrossRefGoogle Scholar
  43. Nash WG, Wienberg J, Ferguson-Smith MA, Menninger JC, O’Brien SJ (1998) Comparative genomics: tracking chromosome evolution in the family Ursidae using reciprocal chromosome painting. Cytogenet Cell Genet 83: 182–192.PubMedCrossRefGoogle Scholar
  44. Nash WG, Menninger JC, Wienberg J, Padilla-Nash HM, O’Brien SJ (2001) The pattern of phylogenomic evolution of the Canidae. Cytogenet Cell Genet 95: 210–224.PubMedCrossRefGoogle Scholar
  45. Nash WG, Menninger JC, Padilla-Nash HM, Stone G, Perelman PL, O'Brien SJ (2008) The ancestral carnivore karyotype (2n = 38) lives today in ringtails. J Hered 99(3): 241–253.PubMedCrossRefGoogle Scholar
  46. Nie W, Wang J, O’Brien PCM et al. (2002) The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding. Chromosome Res 10: 209–222.PubMedCrossRefGoogle Scholar
  47. Nie W, Wang J, Perelman P, Graphodatsky AS, Yang F (2003) Comparative chromosome painting defines the karyotypic relationships among the domestic dog, Chinese raccoon dog and Japanese raccoon dog. Chromosome Res 11(8): 735–740.PubMedCrossRefGoogle Scholar
  48. Nowak RM (1991) Walker’s Mammals of the World, 5th edn, vol. 2. Baltimore and London: The Johns Hopkins University Press.Google Scholar
  49. Owen JG, Baker RJ, Williams SL (1996) Karyotypic variation in spotted skunks (Carnivore: Mustelidae: Spilogale) from Texas, Mexico and El Salvador. Texas J Sci 48(2): 119–122.Google Scholar
  50. Pathak S, Wurster-Hill DH (1977) The distribution of constitutive heterochromatin in carnivores. Cytogenet Cell Genet 18: 245–254.PubMedCrossRefGoogle Scholar
  51. Perelman PL, Graphodatsky AS, Serdukova NA et al. (2005) Karyotypic conservatism in the suborder Feliformia (Order Carnivora). Cytogenet Genome Res 108(4): 348–354.PubMedCrossRefGoogle Scholar
  52. Petter G (1971) Origine, phylogenie et systematique des blaireaux. Mammalia 35: 567–597.CrossRefGoogle Scholar
  53. Pocock RI (1921) On the external characters and classification of the Mustelidae: Proc Zool Soc Lond 803–837.Google Scholar
  54. Radinsky L (1973) Are stink badgers skunks? Implications of neuroanatomy for mustelid phylogeny. J Mammal 54: 585–593.CrossRefGoogle Scholar
  55. Rens W, O’Brien PC, Fairclough H, Harman L, Graves JA, Ferguson-Smith MA (2003) Reversal and convergence in marsupial chromosome evolution. Cytogenet Genome Res 102(1–4): 282–290.PubMedCrossRefGoogle Scholar
  56. Rens W, Fu B, O’Brien PC, Ferguson-Smith M (2006) Cross-species chromosome painting. Nat Protoc 1(2): 783–790.PubMedCrossRefGoogle Scholar
  57. Sato JJ, Hosoda T, Wolsan M, Suzuki H (2004) Molecular phylogeny of arctoids (Mammalia: Carnivora) with emphasis on phylogenetic and taxonomic positions of the ferret-badgers and skunks. Zool Sci 21: 111–118.PubMedCrossRefGoogle Scholar
  58. Sato JJ, Wolsan M, Suzuki H et al. (2006) Evidence from nuclear DNA sequences sheds light on the phylogenetic relationships of pinnipedia: single origin with affinity to musteloidea. Zool Sci 23(2): 125–146.PubMedCrossRefGoogle Scholar
  59. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 30;2(7731): 971–972.CrossRefGoogle Scholar
  60. Simpson GG (1945) The principles of classification and classification of mammals. Bull Am Museum Nat Hist 85: 1–350.Google Scholar
  61. Stanyon R, Galleni L (1991) A rapid fibroblast culture method for mammalian chromosome. Boll Zool 58: 81–83.Google Scholar
  62. Stanyon R, Bigoni F, Wienberg J, Hadidian J (1993) A standardized G-banded karyotype for the raccoon (Procyon lotor) compared with the domestic cat. Boll Zool 60: 41–45.Google Scholar
  63. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304–306.PubMedCrossRefGoogle Scholar
  64. Telenius H, Pelmear AH, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4: 226–257.CrossRefGoogle Scholar
  65. Tian Y, Nie WH, Wang JH, Yang YF, Yang FT (2002) Comparative chromosome painting shows the red panda (Ailurus fulgens) has a highly conserved karyotype. Yi Chuan Xue Bao 29(2): 124–127.PubMedGoogle Scholar
  66. Tian Y, Nie W, Wang J, Ferguson-Smith MA, Yang F (2004) Chromosome evolution in bears: reconstructing phylogenetic relationships by cross-species chromosome painting. Chromosome Res 12(1): 55–63.PubMedCrossRefGoogle Scholar
  67. Verts BJ, Carraway LN, Kinlaw A (2001) Spilogale gracilis. Mammalian Species 674: 1–10. Retrieved from http://www.bioone.org/perlserv/?request=get-archive&issn=1545-1410 11/10/2008.Google Scholar
  68. Vrana PB, Milinkovitch MC, Powell JR, Wheeler WC (1994) Higher level relationships of the arctoid Carnivora based on sequence data and ‘total evidence’. Mol Phylogenet Evol 3: 47–58.PubMedCrossRefGoogle Scholar
  69. Wang X, Whistler DP, Takeuchi GT (2005) A new basal skunk Martinogale (Carnivora, Mephitinae) from late Miocene dove spring formation, California and origin of new world Mephitines. J Vertebrate Paleontol 25(4): 936–949.CrossRefGoogle Scholar
  70. Wienberg J, Stanyon R, Nash WG et al. (1997) Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet 77(3–4): 211–217.PubMedCrossRefGoogle Scholar
  71. Woodward RL (1994) The generic relationships of skunks (Mustelidae, Mephitinae) based on chromosome morphology and banding patterns. MS thesis. Angelo State University, San Angelo, Texas.Google Scholar
  72. Wozencraft WC (1989) The phylogeny of the recent Carnivora. In: Wilson DE, Reeder DM, eds. Carnivore Behaviour, Ecology, and Evolution. Washington, DC: Smithsonian Institution Press, pp. 279–348.Google Scholar
  73. Wozencraft WC (1993) Order Carnivora. In: Wilson DE, Reeder DM, eds. Mammal Species of the World: a Taxonomic and Geographic Reference. Washington, DC: Smithsonian Institution Press, pp. 495–535.Google Scholar
  74. Wozencraft WC (2005) Order Carnivora. In: Wilson DE, Reeder DM, eds. Mammal Species of the World. Baltimore and London: Johns Hopkins University Press, pp. 532–628.Google Scholar
  75. Wurster-Hill DH (1973) Chromosomes of eight species from five families of Carnivora. J Mammal 54(3): 753–760.PubMedCrossRefGoogle Scholar
  76. Wurster DH, Benirschke K (1968) Comparative cytogenetic studies if the order Carnivora. Chromosoma 24: 336–382.PubMedCrossRefGoogle Scholar
  77. Wurster-Hill DH, Gray CW (1975) The interrelationship of chromosome banding patterns in procyonids, viverrids, and felids. Cytogenet Cell Genet 15: 306–331.PubMedCrossRefGoogle Scholar
  78. Wyss AR, Flynn JJ (1993) A phylogenetic analysis and definition of the Carnivora. In: Szalay F, Novacek M, McKenna M eds., Mammal Phylogeny: Placentals. New York: Springer-Verlag, pp. 32–52.Google Scholar
  79. Yang F, Graphodatsky AS (2004) Integrated comparative genome maps and their implications for karyotype evolution of carnivores. In: Schmid M, Nanda I, eds. Chromosomes Today, pp. 215–224.Google Scholar
  80. Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103(9): 642–652.PubMedCrossRefGoogle Scholar
  81. Yang F, O’Brien PC, Milne BS et al. (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62: 189–202.PubMedCrossRefGoogle Scholar
  82. Yang F, Graphodatsky AS, O’Brien PC et al. (2000) Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res 8: 392–404.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. L. Perelman
    • 1
    • 2
  • A. S. Graphodatsky
    • 1
  • J. W. Dragoo
    • 4
  • N. A. Serdyukova
    • 1
  • G. Stone
    • 6
  • P. Cavagna
    • 10
  • A. Menotti
    • 6
  • W. Nie
    • 5
  • P. C. M. O’Brien
    • 3
  • J. Wang
    • 5
  • S. Burkett
    • 6
  • K. Yuki
    • 9
  • M. E. Roelke
    • 2
  • S. J. O’Brien
    • 2
  • F. Yang
    • 7
  • R. Stanyon
    • 8
  1. 1.Institute of Cytology and GeneticsNovosibirskRussia
  2. 2.Laboratory of Genomic DiversityNational Cancer InstituteFrederickUSA
  3. 3.Centre for Veterinary Science, Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
  4. 4.Museum of Southwestern Biology, Department of BiologyUniversity of New MexicoAlbuquerqueUSA
  5. 5.Kunming Institute of ZoologyThe Chinese Academy of SciencesKunmingPR China
  6. 6.Comparative Molecular Cytogenetics CoreNational Cancer InstituteFrederickUSA
  7. 7.Wellcome Trust Sanger InstituteWellcome Trust Genome CampusCambridgeUK
  8. 8.Department of Evolutionary BiologyUniversity of FlorenceFlorenceItaly
  9. 9.Department of Human GeneticsMcGill UniversityMontrealCanada
  10. 10.Department of Anthropological SciencesUniversity of GenoaGenovaItaly

Personalised recommendations