Chromosome Research

, Volume 16, Issue 7, pp 961–976 | Cite as

Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes

  • Tomas Cermak
  • Zdenek Kubat
  • Roman Hobza
  • Andrea Koblizkova
  • Alex Widmer
  • Jiri Macas
  • Boris Vyskot
  • Eduard KejnovskyEmail author


We carried out a global survey of all major types of transposable elements in Silene latifolia, a model species with sex chromosomes that are in the early stages of their evolution. A shotgun genomic library was screened with genomic DNA to isolate and characterize the most abundant elements. We found that the most common types of elements were the subtelomeric tandem repeat X-43.1 and Gypsy retrotransposons, followed by Copia retrotransposons and LINE non-LTR elements. SINE elements and DNA transposons were less abundant. We also amplified transposable elements with degenerate primers and used them to screen the library. The localization of elements by FISH revealed that most of the Copia elements were accumulated on the Y chromosome. Surprisingly, one type of Gypsy element, which was similar to Ogre elements known from legumes, was almost absent on the Y chromosome but otherwise uniformly distributed on all chromosomes. Other types of elements were ubiquitous on all chromosomes. Moreover, we isolated and characterized two new tandem repeats. One of them, STAR-C, was localized at the centromeres of all chromosomes except the Y chromosome, where it was present on the p-arm. Its variant, STAR-Y, carrying a small deletion, was specifically localized on the q-arm of the Y chromosome. The second tandem repeat, TR1, co-localized with the 45S rDNA cluster in the subtelomeres of five pairs of autosomes. FISH analysis of other Silene species revealed that some elements (e.g., Ogre-like elements) are confined to the section Elisanthe while others (e.g. Copia or Athila-like elements) are present also in more distant species. Similarly, the centromeric satellite STAR-C was conserved in the genus Silene whereas the subtelomeric satellite X-43.1 was specific for Elisanthe section. Altogether, our data provide an overview of the repetitive sequences in Silene latifolia and revealed that genomic distribution and evolutionary dynamics differ among various repetitive elements. The unique pattern of repeat distribution is found on the Y chromosome, where some elements are accumulated while other elements are conspicuously absent, which probably reflects different forces shaping the Y chromosome.

Key words

satellites sex chromosomes Silene latifolia transposable elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10577_2008_1254_MOESM1_ESM.doc (28 kb)
Table S1 Clones used for FISH experiments. (DOC 27.5 kb)


  1. Altschul SF, Madden TL, Schaffer AA, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.PubMedCrossRefGoogle Scholar
  2. Anzai T, Takahashi H, Fujiwara H (2001) Elimination of active Tad elements during the sexual phase of the Neurospora crassa life cycle. Fungal Genet Biol 33: 49–57.CrossRefGoogle Scholar
  3. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27: 573–580.PubMedCrossRefGoogle Scholar
  4. Brodie R, Roper RL, Upton C (2004). JDotter: a Java interface to multiple dotplots generated by dotter. Bioinformatics 20: 279–281.PubMedCrossRefGoogle Scholar
  5. Buzek J, Koutnikova H, Houben A, et al. (1997) Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosome Res 5: 57–65.PubMedCrossRefGoogle Scholar
  6. Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Phil Trans R Soc Lond B Biol Sci 355: 1563–1572.CrossRefGoogle Scholar
  7. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.PubMedCrossRefGoogle Scholar
  8. De Keukeleire P, De Schepper S, Gielis J, Gerats T (2004) A PCR-based assay to detect hAT-like transposon sequences in plants. Chromosome Res 12: 117–123.PubMedCrossRefGoogle Scholar
  9. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1: 19–21.CrossRefGoogle Scholar
  10. Downs JA, Jackson SP (1999) Involvement of DNA end-binding protein Ku in Ty element retrotransposition. Mol Cell Biol 19: 6260–6268.PubMedGoogle Scholar
  11. Erlandsson R, Wilson JF, Paabo S (2000) Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans. Mol Biol Evol 17: 804–812.PubMedGoogle Scholar
  12. Fawcett JA, Kawahara T, Watanabe H, Yasui Y (2006) A SINE family widely distributed in the plant kingdom and its evolutionary history. Plant Mol Biol 61: 505–514.PubMedCrossRefGoogle Scholar
  13. Feschotte C, Wessler SR (2002) Mariner-like transposases are widespread and diverse in flowering plants. Proc Natl Acad Sci U S A 99: 280–285.PubMedCrossRefGoogle Scholar
  14. Flavell JA, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20: 3639–3644.PubMedCrossRefGoogle Scholar
  15. Friesen N, Brandes A, Heslop-Harrison JS (2001) Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Mol Biol Evol 18: 1176–1188.PubMedGoogle Scholar
  16. Garrido-Ramos MA, de la Herran R, Ruiz Rejon M, Ruiz Rejon C (1999) A subtelomeric satellite DNA family isolated from the genome of the dioecious plant Silene latifolia. Genome 42: 442–446.PubMedCrossRefGoogle Scholar
  17. Hobza R, Lengerova M, Cernohorska H, Rubes J, Vyskot B (2004) FAST-FISH with laser beam microdissected DOP-PCR probe distinguishes the sex chromosomes of Silene latifolia. Chromosome Res 12: 245–250.PubMedCrossRefGoogle Scholar
  18. Hobza R, Lengerova M, Svoboda J, Kubekova H, Kejnovsky E, Vyskot B (2006) An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma 115: 376–382.PubMedCrossRefGoogle Scholar
  19. Hobza R, Kejnovsky E, Vyskot B, Widmer A (2007) The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes. Mol Genet Genomics 278: 633–638.PubMedCrossRefGoogle Scholar
  20. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110: 462–467.PubMedCrossRefGoogle Scholar
  21. Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biology 3: 998–1010.CrossRefGoogle Scholar
  22. Kazama Y, Sugiyama R, Matsunaga S et al. (2003) Organization of the KpnI family of chromosomal distal-end satellite DNAs in Silene latifolia. J Plant Res 116: 317–326.PubMedCrossRefGoogle Scholar
  23. Kazama Y, Sugiyama R, Suto Y, Uchida W, Kawano S (2006) The clustering of four subfamilies of satellite DNA at individual chromosome ends in Silene latifolia. Genome 49: 520–530.PubMedCrossRefGoogle Scholar
  24. Kejnovsky E, Kubat Z, Macas J, Hobza R, Mracek J, Vyskot B (2006a) Retand: a novel family of gypsy-like retrotransposon harboring an amplified tandem repeat. Mol Genet Genomics 276: 254–263.PubMedCrossRefGoogle Scholar
  25. Kejnovsky E, Kubat Z, Hobza R et al. (2006b) Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. Genetica 128: 167–175.PubMedCrossRefGoogle Scholar
  26. Kejnovsky E, Hobza R, Kubat Z, Widmer A, Marais G, Vyskot B (2007) High intrachromosomal similarity of retrotransposon long terminal repeats: evidence for homogenization by gene conversion on plant sex chromosomes? Gene 390: 92–97.PubMedCrossRefGoogle Scholar
  27. Kidwell MG, Lisch D (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution Int J Org Evolution 55: 1–24.Google Scholar
  28. Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7: 474.PubMedCrossRefGoogle Scholar
  29. Kubat Z, Hobza R, Vyskot B, Kejnovsky E (2008) Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome 51: 1–7.CrossRefGoogle Scholar
  30. Larkin MA, Blackshields G, Brown NP et al. (2007) ClustalW2 and ClustalX version 2. Bioinformatics 23: 2947–2948.PubMedCrossRefGoogle Scholar
  31. Lengerova M, Kejnovsky E, Hobza R, Macas J, Grant SR, Vyskot B (2004) Multicolor FISH mapping of the dioecious model plant, Silene latifolia. Theor Appl Genet 108: 1193–1199.PubMedCrossRefGoogle Scholar
  32. Lisch DR, Freeling M, Langham RJ, Choy MY (2001) Mutator transposase is widespread in the grasses. Plant Physiol 125: 1293–1303.PubMedCrossRefGoogle Scholar
  33. Liu Z, Moore PH, Ma H et al. (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427: 348–352.PubMedCrossRefGoogle Scholar
  34. Macas J, Neumann P (2007) Ogre elements—a distinct group of plant Ty3/gypsy-like retrotransposons. Gene 390: 108–116.PubMedCrossRefGoogle Scholar
  35. Macas J, Pozarkova D, Navratilova A, Nouzova M, Neumann P (2000) Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR. Mol Gen Genet 263: 741–751.PubMedCrossRefGoogle Scholar
  36. Macas J, Neumann P, Navratilova A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8: 427.PubMedCrossRefGoogle Scholar
  37. Marais GAB, Nicolas M, Bergero R et al. (2008) Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Current Biol 18: 1–5.CrossRefGoogle Scholar
  38. Marchler-Bauer A, Anderson JB, DeWeese-Scott C et al. (2003) CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31: 383–387.PubMedCrossRefGoogle Scholar
  39. Markova M, Michu E, Vyskot B, Janousek B, Zluvova J (2007) An interspecific hybrid as a tool to study phylogenetic relationships in plants using the GISH technique. Chromosome Res 15: 1051–1059.PubMedCrossRefGoogle Scholar
  40. Matsunaga S, Kawano S, Michimoto T et al. (1999) Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y chromosome DNA in a dioecious plant, Silene latifolia. Plant Cell Physiol 40: 60–68.PubMedGoogle Scholar
  41. Matsunaga S, Yagisawa F, Yamamoto M, Uchida W, Nakao S, Kawano S (2002) LTR retrotransposons in the dioecious plant Silene latifolia. Genome 45: 745–751.PubMedCrossRefGoogle Scholar
  42. Nanda I, Kondo M, Hornung U et al. (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci U S A 99: 11778–11783.PubMedCrossRefGoogle Scholar
  43. Negrutiu I, Vyskot B, Barbacar N, Georgiev S, Moneger F (2001) Dioecious plants. A key to the early events of sex chromosome evolution. Plant Physiol 127: 1418–1424.PubMedCrossRefGoogle Scholar
  44. Neumann P, Pozarkova D, Macas J (2003) Highly abundant pea LTR retrotransposons Ogre is constitutively transcribed and partially spliced. Plant Mol Biol 53: 399–410.PubMedCrossRefGoogle Scholar
  45. Neumann P, Koblizkova A, Navratilova A, Macas J (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173: 1047–1056.PubMedCrossRefGoogle Scholar
  46. Nicolas M, Marais G, Hykelova V et al. (2005) A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol. 3: 47–56.CrossRefGoogle Scholar
  47. Noma K, Ohtsubo E, Ohtsubo H (1999) Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes. Mol Gen Genet 261: 71–79.PubMedCrossRefGoogle Scholar
  48. Okada S, Sone T, Fujisawa M et al. (2001) The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene. Proc Natl Acad Sci U S A 98: 9454–9459.PubMedCrossRefGoogle Scholar
  49. Peichel CL, Ross JA, Matson CK et al. (2004) The master sex-determination locus in threespine sticklebacks is on nascent Y chromosome. Curr Biol 14: 1416–1424.PubMedCrossRefGoogle Scholar
  50. Pelissier T, Tutois S, Deragon JM, Tourmente S, Genestier S, Picard G (1995) Athila, a new retroelement from Arabidopsis thaliana. Plant Mol Biol 29: 441–452.PubMedCrossRefGoogle Scholar
  51. Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A Ty3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16: 721–728.PubMedCrossRefGoogle Scholar
  52. Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S (2000) Site-specific accumulation of LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44: 723–732.PubMedCrossRefGoogle Scholar
  53. Sanger F, Nicklen D, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467.PubMedCrossRefGoogle Scholar
  54. SanMiguel P, Tikhonov A, Jin YK et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 273: 765–769.CrossRefGoogle Scholar
  55. Shibata F, Hizume M, Kuroki Y (1999) Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma 108: 266–270.PubMedCrossRefGoogle Scholar
  56. Shibata F, Hizume M, Kuroki Y (2000) Differentiation and the polymorphic nature of the Y chromosome revealed by repetitive sequences in the dioecious plant, Rumex acetosa. Chromosome Res 8: 229–236.PubMedCrossRefGoogle Scholar
  57. Siroky J, Lysak MA, Dolezel J, Kejnovsky E, Vyskot B (2001) Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosome Res 9: 387–393.PubMedCrossRefGoogle Scholar
  58. Staginnus Ch, Huettel B, Desel Ch, Schmidt T, Kahl G (2001) A PCR-based assay to detect En/Spm-like transposon sequences in plants. Chromosome Res 9: 591–605.PubMedCrossRefGoogle Scholar
  59. Steinemann S, Steinemann M (2005) Y chromosomes: born to be destroyed. BioEssays 27: 1076–1083.PubMedCrossRefGoogle Scholar
  60. Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13: 699–705.PubMedCrossRefGoogle Scholar
  61. Sykorova E, Fajkus J, Mikako I, Fukui K (2001) Transition between two forms of heterochromatin at plant subtelomeres. Chromosome Res 9: 309–323.PubMedCrossRefGoogle Scholar
  62. Vershinin AV, Druka A, Alkhimova AG, Kleinhofs A, Heslop-Harrison JS (2002) LINEs and gypsy-like retrotransposons in Hordeum species. Plant Mol Biol 49: 1–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Tomas Cermak
    • 1
  • Zdenek Kubat
    • 1
  • Roman Hobza
    • 1
  • Andrea Koblizkova
    • 2
  • Alex Widmer
    • 3
  • Jiri Macas
    • 2
  • Boris Vyskot
    • 1
  • Eduard Kejnovsky
    • 1
    Email author
  1. 1.Laboratory of Plant Developmental GeneticsInstitute of Biophysics ASCRBrnoCzech Republic
  2. 2.Biology Centre ASCRInstitute of Plant Molecular BiologyCeske BudejoviceCzech Republic
  3. 3.ETH Zurich, Institute of Integrative Biology, Plant Ecological GeneticsZurichSwitzerland

Personalised recommendations