Chromosome Research

, Volume 16, Issue 7, pp 935–947 | Cite as

Phylogenomic study of spiral-horned antelope by cross-species chromosome painting

  • Jiri Rubes
  • Svatava Kubickova
  • Eva Pagacova
  • Halina Cernohorska
  • Dino Di Berardino
  • Marketa Antoninova
  • Jiri Vahala
  • Terence J. Robinson


Chromosomal homologies have been established between cattle (Bos taurus, 2n = 60) and eight species of spiral-horned antelope, Tribe Tragelaphini: Nyala (Tragelaphus angasii, 2n = 55♂/56♀), Lesser kudu (T. imberbis, 2n = 38♂,♀), Bongo (T. eurycerus, 2n = 33♂/34♀), Bushbuck (T. scriptus, 2n = 33♂/34♀), Greater kudu (T. strepsiceros, 2n = 31♂/32♀), Sitatunga (T. spekei, 2n = 30♂,♀) Derby eland (Taurotragus derbianus 2n = 31♂/32♀) and Common eland (T. oryx 2n = 31♂/32♀). Chromosomes involved in centric fusions in these species were identified using a complete set of cattle painting probes generated by laser microdissection. Our data support the monophyly of Tragelaphini and a clade comprising T. scriptus, T. spekei, T. euryceros and the eland species T. oryx and T. derbianus, findings that are largely in agreement with sequence-based molecular phylogenies. In contrast, our study suggests that the arid adaptiveness of T. oryx and T. derbianus is recent. Finally, we have identified the presence of the rob(1;29) fusion as an evolutionary marker in most of the tragelaphid species investigated. This rearrangement is associated with reproductive impairment in cattle and raises questions whether subtle distinctions in breakpoint location or differential rescue during meiosis underpin the different outcomes detected among these lineages.

Key words

Bovidae chromosomes fluorescence in-situ hybridization phylogeny Tragelaphini 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10577_2008_1250_MOESM1_ESM.doc (120 kb)
Supplementary Table S1 Matrix of characters used in the parsimony analysis. (PDF 120 kb)


  1. Avise JC, Robinson TJ (2008) Hemiplasy: A new term in the lexicon of phylogenetics. Syst Biol 57: 503–507.Google Scholar
  2. Adega F, Chaves R, Guedes-Pinto H (2006) Physical organization of the 1.709 satellite IV DNA family in Bovini and Tragelaphini tribes of the Bovidae: sequence and chromosomal evolution. Cytogenet Genome Res 114: 140–146.PubMedCrossRefGoogle Scholar
  3. Alden PC, Estes RD, Schlitter D, McBride B (1995) National Audubon Society Field Guide to African Wildlife. New York: Knopf.Google Scholar
  4. Ansell WFH (1971) Order Artiodactyla. In: Meester J, Setzer HW, eds. The Mammals of Africa: An Identification Manual. Washington: Smithsonian Institute Press, part 15, pp. 1–84.Google Scholar
  5. Ashley T (2002) X-autosome translocations, meiotic synapsis, chromosome evolution and speciation. Cytogenet Genome Res 96: 33–39.PubMedCrossRefGoogle Scholar
  6. Benirschke K, Kumamoto AT, Esra GN, Crocker KB (1982) The chromosomes of the bongo, Taurotragus (Boocerus) eurycerus. Cytogenet Cell Genet 34: 10–18.PubMedCrossRefGoogle Scholar
  7. Bonnet-Garnier A, Lacaze S, Beckers JF et al. (2008) Meiotic segregation analysis in cows carrying the t(1;29) Robertsonian translocation. Cytogenet Genome Res 120: 91–96.PubMedCrossRefGoogle Scholar
  8. Britton-Davidian J, Catalan J, da Graça Ramalhinho M et al. (2000) Rapid chromosomal evolution in island mice. Nature 403: 158.PubMedCrossRefGoogle Scholar
  9. Bronner GN, Hoffmann M, Taylor PJM et al. (2003) A revised systematic checklist of the extant mammals of the southern African subregion. Durban Mus Novit 28: 56–106.Google Scholar
  10. Buckland RA, Evans HJ (1978) Cytogenetic aspects of phylogeny in the Bovidae. Cytogenet Cell Genet 21: 64–71.PubMedCrossRefGoogle Scholar
  11. Chaves R, Guedes-Pinto H, Heslop-Harrison JS, Schwarzacher T (2000) The species and chromosomal distribution of the centromeric α-satellite I sequence from sheep in the tribe Caprini and other Bovidae. Cytogenet Cell Genet 91: 62–66.PubMedCrossRefGoogle Scholar
  12. Chaves R, Guedes-Pinto H, Heslop-Harrison JS (2005) Phylogenetic relationships and the primitive X chromosome inferred from chromosomal and satellite DNA analysis in Bovidae. Proc R Soc B 272: 2009–2016.PubMedCrossRefGoogle Scholar
  13. Deuve JL, Bennett NC, O’Brien PCM et al. (2006) Complex evolution of X and Y autosomal translocation in the giant mole-rat, Cryptomys mechowi (Bathyergidae). Chromosome Res 14: 681–691.PubMedCrossRefGoogle Scholar
  14. Di Meo GP, Perucatti A, Floriot S et al. (2005) Chromosome evolution and improved cytogenetic maps of the Y chromosome in cattle, zebu, river buffalo, sheep and goat. Chromosome Res 13: 349–355.PubMedCrossRefGoogle Scholar
  15. Di Meo G, Perucatti A, Chaves R et al. (2006) Cattle rob(1;29) originating from complex chromosome rearrangements as revealed by both banding and FISH-mapping techniques. Chromosome Res 14: 649–655.PubMedCrossRefGoogle Scholar
  16. Dobigny G, Aniskin V, Volobouev V (2002) Explosive chromosomal evolution and speciation in the gerbil genus Taterillus (Rodentia, Gerbillinae): a case of two new cryptic species. Cytogenet Genome Res 96: 117–124.PubMedCrossRefGoogle Scholar
  17. Dobigny G, Ducroz JF, Robinson TJ, Volobouev V (2004a) Cytogenetics and cladistics. Syst Biol 53: 470–484.PubMedCrossRefGoogle Scholar
  18. Dobigny G, Ozouf-Costaz C, Bonillo C, Volobouev V (2004b) Viability of X-autosome translocation in mammals: an epigenomic hypothesis from a rodent case-study. Chromosoma 113: 34–41.PubMedCrossRefGoogle Scholar
  19. Dyrendahl I, Gustavsson I (1997) Sexual functions, semen characteristics and fertility of bulls carrying the 1/29 chromosome translocation. Hereditas 90: 281–289.Google Scholar
  20. Essop MF, Harley EH, Baumgarten I (1997) A molecular phylogeny of some Bovidae based on restriction-site mapping of mitochondrial DNA. J Mammal 78: 377–386.CrossRefGoogle Scholar
  21. Fredga K (1972) Comparative chromosome studies in mongooses (Carnivora, Viverridae). I. Idiograms of 12 species and karyotype evolution in Herpestinae. Hereditas 71: 1–74.PubMedGoogle Scholar
  22. Froenicke L, Lyons LA (2008) In: Encyclopedia of Life Science. Chichester: John Wiley & Sons, Ltd. doi:10.1002/9780470015902.a0020750.Google Scholar
  23. Gallagher Jr DS, Womack JE (1992) Chromosome conservation in the Bovidae. J Hered 83: 287–298.PubMedGoogle Scholar
  24. Gallagher Jr DS, Davis SK, De Donato M et al. (1999) A molecular cytogenetic analysis of the tribe Bovini (Artiodactyla: Bovidae: Bovinae) with an emphasis on sex chromosome morphology and NOR distribution. Chromosome Res 7: 481–492.PubMedCrossRefGoogle Scholar
  25. Gatesy J, Amato G, Vrba ES, Schaller G, DeSalle R (1997) A cladistic analysis of mitochondrial ribosomal DNA from the Bovidae. Mol Phylogenet Evol 7: 303–319.PubMedCrossRefGoogle Scholar
  26. Gentry AW (1992) The subfamilies and tribes of the family Bovidae. Mammal Rev 22: 1–32.CrossRefGoogle Scholar
  27. Georgiadis NJ, Kat PW, Oketch H, Patton J (1990) Allozyme divergence within the Bovidae. Evolution 44: 2135–2149.CrossRefGoogle Scholar
  28. Grubb P (2005) Order Artiodactyla. In: Wilson, DE, Reeder, DM, eds. Mammal Species of the World A Taxonomic and Geographic Reference. Baltimore: Johns Hopkins University Press, pp. 637–722.Google Scholar
  29. Hassanin A, Douzery EJP (1999a) Evolutionary affinities of the enigmatic Saola (Pseudoryx nghetinhensis), in the context of the molecular phylogeny of Bovidae. Proc R Soc Lond B Biol Sci 266: 893–900.CrossRefGoogle Scholar
  30. Hassanin A, Douzery EJP (1999b) The tribal radiation of the family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome b gene. Mol Phylogenet Evol 13: 227–243.PubMedCrossRefGoogle Scholar
  31. Hassanin A, Douzery EJP (2003) Molecular and morphological phylogenies of ruminantia and the alternative position of the Moschidae. Syst Biol 52: 206–228.PubMedCrossRefGoogle Scholar
  32. Hassanin A, Ropiquet A (2004) Molecular phylogeny of the tribe Bovini (Bovidae, Bovinae) and the taxonomic status of the Kouprey, Bos sauveli Urbain 1937. Mol Phylogenet Evol 33: 896–907.PubMedCrossRefGoogle Scholar
  33. Iannuzzi L, Di Berardino D, Gustavsson I, Ferrara L, Di Meo GP (1987) Centromeric loss in translocations of centric fusion type in cattle and water buffalo. Hereditas 106: 73–81.PubMedCrossRefGoogle Scholar
  34. Iannuzzi L, Di Meo GP, Perucatti A, Incarnato D, Schibler L, Cribiu EP (2000) Comparative FISH mapping of bovid X chromosomes reveals homologies and divergences between the subfamilies Bovinae and Caprinae. Cytogenet Cell Genet 89: 71–176.CrossRefGoogle Scholar
  35. ISCNDB2000 (2001) International system for chromosome nomenclature of domestic bovids. Cytogenet Cell Genet 92: 283–299.CrossRefGoogle Scholar
  36. Kingdon J (1982) East African Mammals: An Atlas of Evolution in Africa, vols 3C and 3D. London: Academic Press.Google Scholar
  37. Kubickova S, Cernohorska H, Musilova P, Rubes J (2002) The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res 10: 571–577.PubMedCrossRefGoogle Scholar
  38. Matthee CA, Davis SK (2001) Molecular insights into the evolution of the family Bovidae: a nuclear DNA perspective. Mol Biol Evol 18: 1220–1230.PubMedGoogle Scholar
  39. Matthee CA, Robinson TJ (1999) Cytochrome b phylogeny of family Bovidae: resolution within the Alcephini, Antilopini, Neotragini and Tragelaphini. Mol Phylognet Evol 12: 31–46.CrossRefGoogle Scholar
  40. Maurer RR, Vogt DW (1988) Decreased fertility in related females heterozygous for the 1/29 chromosome translocation. Theriogenology 30: 1149–1157.PubMedCrossRefGoogle Scholar
  41. Nowak RM (1999) Walker’s Mammals of the World, vol 2. Baltimore: The Johns Hopkins University Press.Google Scholar
  42. O’Brien SJ, Menninger JC, Nash WG (2006) Atlas of Mammalian Chromosomes. Hoboken: Wiley.Google Scholar
  43. Pack SD, Borodin PM, Serov OL, Searle JB (1993) The X-autosome translocation in the common shrew (Sorex araneus L.): late replication in female somatic cells and pairing in male meiosis. Chromosoma 102: 355–360.PubMedCrossRefGoogle Scholar
  44. Petit P, Vermeesch JR, Marynen P, DeMeurichy W (1994) Comparative cytogenetic study in the subfamily Tragelaphinae. Proceedings of the 11th European. Colloquium on Cytogenetics of Domestic Animals, Copenhagen, pp. 109–113.Google Scholar
  45. Popescu CP (1996) From chromosome shape to chromosome mapping: 30 years of domestic animal cytogenetics. Arch Zootech 45: 117–124.Google Scholar
  46. Ratomponirina C, Viegas-Péquignot E, Dutrillaux B, Petter F, Rumpler Y (1986) Synaptonemal complexes in Gerbillidae: probable role of intercaled heterochromatin in gonosome-autosome translocations. Cytogenet Cell Genet 43: 161–167.PubMedCrossRefGoogle Scholar
  47. Robinson TJ, Harrison WR, Ponce de León A, Elder FF (1997) X chromosome evolution in the suni and eland antelope: detection of homologous regions by fluorescence in situ hybridization and G-banding. Cytogenet Cell Genet 77: 218–222.PubMedCrossRefGoogle Scholar
  48. Robinson TJ, Harrison WR, Ponce de León FA, Davis SK, Elder FFB (1998) A molecular cytogenetic analysis of X chromosome repatterning in the Bovidae: transpositions, inversions, and phylogenetic inference. Cytogenet Cell Genet 80: 179–184.PubMedCrossRefGoogle Scholar
  49. Ropiquet A, Hassanin A (2005a) Molecular phylogeny of caprines (Bovidae, Antilopinae): the question of their origin and diversification during the Miocene. J Zoolog Syst Evol Res 43: 49–60.CrossRefGoogle Scholar
  50. Ropiquet A, Hassanin A (2005b) Molecular evidence for the polyphyly of the genus Hemitragus (Mammalia, Bovidae). Mol Phylogenet Evol 36: 154–168.PubMedCrossRefGoogle Scholar
  51. Schmutz SM, Moker JS, Barth AD, Mapletoft RJ (1991) Embryonic loss in superovulated cattle cause by the 1–29 Robertsonian translocation. Theriogenology 35: 705–714.PubMedCrossRefGoogle Scholar
  52. Schmutz SM, Moker JS, Clark EG, Orr JP (1996) Chromosomal causes of spontaneous abortion and neonatal loss in cattle. J Vet Clin Invest 8: 91–95.Google Scholar
  53. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2: 971–972.PubMedCrossRefGoogle Scholar
  54. Skinner JD, Chimimba ChT (2005) The Mammals of the Southern African Subregion. Cambridge: Cambridge University Press.Google Scholar
  55. Sumner AT (1972) A simple technique for demonstrating centric heterochromatin. Exp Cell Res 75: 304–306.PubMedCrossRefGoogle Scholar
  56. Tucker PK (1986) Sex chromosome-autosome translocations in the leaf-nosed bats, family Phyllostomidae. I. Mitotic studies of the subfamilies Stenodermatinae and Phyllostominae. Cytogenet Cell Genet 43: 19–27.PubMedCrossRefGoogle Scholar
  57. Vassart M, Seguela A, Hayes H (1995) Chromosome evolution in gazelles. J Hered 86: 216–227.PubMedGoogle Scholar
  58. Verma RS, Babu A (1989) Human Chromosomes. Manual of Basic Techniques. New York: Pergamon.Google Scholar
  59. Veyrunes F, Catalan J, Sicard B et al. (2004) Autosome and sex chromosome diversity among the African pygmy mice, subgenus Nannomys (Murinae; Mus). Chromosome Res 12: 369–382.PubMedCrossRefGoogle Scholar
  60. Viegas-Péquignot E, Benazzou T, Dutrillaux B, Petter F (1982) Complex evolution of sex chromosomes in Gerbillidae (Rodentia). Cytogenet Cell Genet 34: 158–167.PubMedCrossRefGoogle Scholar
  61. Vrba ES (1985) African bovidae: evolutionary events since the Miocene. S Afr J Sci 81: 263–266.Google Scholar
  62. Wallace C (1977) Chromosome analysis in the Kruger National Park: the chromosomes of the bushbuck (Tragelaphus scriptus). Cytogenet Cell Genet 18: 50–56.PubMedCrossRefGoogle Scholar
  63. Wallace C (1978) Chromosomal evolution in the antelope tribe Tragelaphini. Genetica 48: 75–80.CrossRefGoogle Scholar
  64. Wallace C (1980) Chromosome studies in a male nyala (Tragelaphus angasi). Genetica 54: 101–103.CrossRefGoogle Scholar
  65. Willows-Munro S, Robinson TJ, Matthee CA (2005) Utility of nuclear DNA intron markers at lower taxonomic levels: Phylogenetic resolution among nine Tragelaphus spp. Mol Phylogenet Evol 35: 624–636.PubMedCrossRefGoogle Scholar
  66. Yang F, O’Brien PVM, Wienberg J, Ferguson-Smith MA (1997) A reappraisal of the tandem fusion theory of karyotype evolution in the Indian muntjac using chromosome painting. Chromosome Res 5: 109–117.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jiri Rubes
    • 1
  • Svatava Kubickova
    • 1
  • Eva Pagacova
    • 1
  • Halina Cernohorska
    • 1
  • Dino Di Berardino
    • 2
  • Marketa Antoninova
    • 3
  • Jiri Vahala
    • 4
  • Terence J. Robinson
    • 5
  1. 1.Department of Genetics and ReproductionVeterinary Research InstituteBrnoCzech Republic
  2. 2.Department of Soil, Plant, Environment and Animal ProductionUniversity of Naples ‘Federico II’NaplesItaly
  3. 3.Institute of the Tropics and SubtropicsCzech University of Agriculture in PraguePragueCzech Republic
  4. 4.ZOO Dvur KraloveDvur Kralove n. L.Czech Republic
  5. 5.Evolutionary Genomics Group, Department of Botany and ZoologyUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations