Chromosome Research

, 16:863 | Cite as

Chromosome studies of European cyprinid fishes: interspecific homology of leuciscine cytotaxonomic marker—the largest subtelocentric chromosome pair as revealed by cross-species painting

  • Petr Ráb
  • Marie Rábová
  • Carla Sofia Pereira
  • Maria João Collares-Pereira
  • Šárka Pelikánová


Leuciscine cyprinids possess a nearly invariant diploid number (2n = 50) with an extremely uniform karyotype comprising of 8 pairs of metacentric, 13–15 pairs of submetacentric and 2–4 pairs of subtelocentric (st) to acrocentric (a) chromosomes. The largest pair is characteristically an st/a element—the ‘leuciscine’ cytotaxonomic marker. Previously, the interspecific homology of this chromosome pair could not be assessed owing to the inability to produce euchromatic or serial banding patterns. In the present study, we used laser-microdissection (15–20 copies of the marker chromosome) to construct a whole chromosome probe (WCP) from the marker chromosome of the roach Rutilus rutilus to ascertain the interspecific homology of marker chromosomes by cross-species in-situ hybridization. WCP was hybridized to chromosomes of widely distributed (Abramis brama, Alburnoides bipunctatus, Alburnus alburnus, Aspius aspius, Ballerus ballerus, B. sapa, Blicca bjoerkna, Chondrostoma nasus, Leucaspius delineatus, Leuciscus leuciscus, L. idus, R. rutilus, Scardinius erythrophthalmus, Squalius cephalus, and Vimba vimba) and Iberian endemic species (Achondrostoma oligolepis, Iberochondrostoma almacai, I. lusitanicum, Pseudochondrostoma duriense, S. alburnoides and S. pyrenaicus). Cross-species in-situ hybridization to chromosomes of Phoxinus phoxinus, a representative of leuciscine sister lineage, showed the same pattern as in all of the leuciscins. The probe consistently hybridized to the distal part of the short arm of the marker chromosome, indicating sequence homology.

Key words

chromosome painting fish cytogenetics karyotype uniformity leuciscine cyprinids 


  1. Bianco PG, Aprea G, Balletto E, Capriglione T, Fulgione D, Odierna G (2004) The karyology of the cyprinid genera Scardinius and Rutilus in southern Europe. Ichthyol Res 51: 392–392.CrossRefGoogle Scholar
  2. Blaxhall PC (1983) Chromosome karyotyping of fish using conventional and G-banding methods. J Fish Biol 22: 417–424.CrossRefGoogle Scholar
  3. Boroń A (2001) Comparative chromosomal studies on two fish, Phoxinus phoxinus (Linnaeus, 1758) and Eupallasella perenurus (Pallas, 1814); an associated cytogenetic-taxonomic considerations. Genetica 111: 387–395.PubMedCrossRefGoogle Scholar
  4. Cunha C, Mesquita N, Dowling TE, Gilles A, Coelho MM (2002) Phylogenetic relationships of Eurasian and American cyprinids using cytochrome b sequences. J Fish Biol 61: 929–944.CrossRefGoogle Scholar
  5. Dobigny G, Ducroz JF, Robinson TJ, Volobuev V (2004) Cytogenetics and cladistics. Syst Biol 53: 470–484.PubMedCrossRefGoogle Scholar
  6. Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC (1997) Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma 106: 44–52.PubMedCrossRefGoogle Scholar
  7. Gold JR, Li CZ, Shipley NS, Powers PK (1990) Improved methods for working with fish chromomes with a review of metaphase chromosome banding. J Fish Biol 37: 563–575.Google Scholar
  8. Graphodatsky AS (2007) Comparative chromosomics. Mol Biol 41: 361–375.CrossRefGoogle Scholar
  9. Gromicho M, Coutanceau JP, Ozouf-Costaz C, Collares-Pereira MJ (2006) Contrast between extensive variation of 28S rDNA and stability of 5S rDNA and telomeric repeats in the diploid-polyploid Squalius alburnoides complex and in its maternal ancestor Squalius pyrenaicus (Teleostei, Cyprinidae). Chromosome Res 14: 297–306.PubMedCrossRefGoogle Scholar
  10. Hellmer A, Voiculescu I, Schempp W (1991) Replication banding studies in two cyprinid fishes. Chromosoma 100: 524–531.CrossRefGoogle Scholar
  11. Kubíčková S, Černohorská H, Musilová P, Rubeš J (2002) The use of laser microdissection for the prepration of chromosome-specific paintig probes in farm animals. Chromosome Res 10: 571–577.PubMedCrossRefGoogle Scholar
  12. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.CrossRefGoogle Scholar
  13. Medrano L, Bernardi G, Couturier J, Dutrillaux B, Bernardi G (1988) Chromosome banding and genome compartmentalization in fishes. Chromosoma 96: 178–183.CrossRefGoogle Scholar
  14. Nagamachi C, Pieczarka J, Milhomem S, Silva D, O’Brien P, Freguson-Smith M (2007) NOR chromosome variation detected by chromosome painting in Neotropical electric fishes (Gymnotiformes). Chromosome Res 15: 45 (Suppl. 2).Google Scholar
  15. Phillips RB, Konkol NR, Reed KM, Stein JD (2001) Chromosome painting supports lack of homology among sex chromosomes in Oncorhynchus, Salmo and Salvelinus. Genetica 111: 119–123.CrossRefGoogle Scholar
  16. Phillips RB, DeKoning J, Morasch MR, Park LK, Devlin RH (2007) Identification of the sex chromosome pair in chum salmon (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha). Cytogenet Genome Res 116: 298–304.PubMedCrossRefGoogle Scholar
  17. Ráb P, Collares-Pereira MJ (1995) Chromosomes of European cyprinid fishes (Cyprinidae, Cypriniformes). A review. Fol Zool 44: 193–214.Google Scholar
  18. Rábová M, Ráb P, Ozouf-Costaz C, Ene C, Wanzeböck J (2003) Comparative cytogenetics and chromosomal characteristics of ribosomal DNA in the fish genus Vimba (Cyprinidae). Genetica 118: 83–91.PubMedCrossRefGoogle Scholar
  19. Reed KM, Bohlander SK, Phillips RB (1995) Microdissection of the Y chromosome and FISH analysis of the sex chromosomes of lake trout, (Salvelinus namaycush). Chromosome Res 5: 221–227.CrossRefGoogle Scholar
  20. Rens W, Fu B, O’Brien PCM, Ferguson-Smith M (2006) Cross-species chromosome painting. Nat Protoc 1(2): 783–790.PubMedCrossRefGoogle Scholar
  21. Schmid M, Guttenbach M (1988) Evolutionary diversity of reverse ® fluorescent bands in vertebrates. Chromosoma 97: 101–114.PubMedCrossRefGoogle Scholar
  22. Schmid M, Steinlein C, Nanda I, Epplen JT (1990) Chromosome banding in amphibia, In: E. Olmo, ed. Cytogenetics of Amphibians and Reptiles. Basel: Birkhäuser, pp. 2–45.Google Scholar
  23. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2: 971–972.PubMedCrossRefGoogle Scholar
  24. Sumner AT (1990) Chromosome Banding. London: Unwin Hyman.Google Scholar
  25. Sumner AT, Evans HJ, Buckland RA (1971) New technique for distinguishing between human chromosomes. Nat New Biol 232: 31–32.PubMedGoogle Scholar
  26. Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of traget DNA by a single degenerate primer. Genomics 13: 718–725.PubMedCrossRefGoogle Scholar
  27. Vasil’ev VP (1985) Evolutionary Karyology of Fishes. Moscow: Nauka Press [in Russian].Google Scholar
  28. Yu QX, Fan LC, Cui JX, Ren XH, Li K, Yu XJ (1994) High resolution G-banding and idiogram on pachytene bivalents of rice field eels (Monopterus albus Zuiew). Science in China (Ser. B) 37: 1090–1096.Google Scholar
  29. Zardoya R, Doadrio I (1999) Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids. J Mol Evol 49: 227–237.PubMedCrossRefGoogle Scholar
  30. Zhu HP, Ma DM, Gui JF (2006) Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosome Res 14: 767–776.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Petr Ráb
    • 1
    • 3
  • Marie Rábová
    • 1
  • Carla Sofia Pereira
    • 2
  • Maria João Collares-Pereira
    • 2
  • Šárka Pelikánová
    • 1
  1. 1.Laboratory of Fish Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesLiběchovCzech Republic
  2. 2.Faculdade de Ciências, Departamento de Biologia Animal/Centro de Biologia AmbientalUniversidade de LisboaLisbonPortugal
  3. 3.Joint Laboratory of Genetics, Physiology and Reproduction of Fish, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic and Research Institute of Fish Culture and HydrobiologyUniversity of South Bohemia České BudějoviceVodňanyCzech Republic

Personalised recommendations