Chromosome Research

, Volume 16, Issue 3, pp 367–382 | Cite as

High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy

  • Jürgen Reymann
  • David Baddeley
  • Manuel Gunkel
  • Paul Lemmer
  • Werner Stadter
  • Thibaud Jegou
  • Karsten Rippe
  • Christoph Cremer
  • Udo Birk


Spatially modulated illumination (SMI) microscopy is a method of wide field fluorescence microscopy featuring interferometric illumination, which delivers structural information about nanoscale architecture in fluorescently labelled cells. The first prototype of the SMI microscope proved its applicability to a wide range of biological questions. For the SMI live cell imaging this system was enhanced in terms of the development of a completely new upright configuration. This so called Vertico-SMI transfers the advantages of SMI nanoscaling to vital biological systems, and is shown to work consistently at different temperatures using both oil- and water-immersion objective lenses. Furthermore, we increased the speed of data acquisition to minimize errors in the detection signal resulting from cellular or object movement. By performing accurate characterization, the present Vertico-SMI now offers a fully-fledged microscope enabling a complete three-dimensional (3D) SMI data stack to be acquired in less than 2 seconds. We have performed live cell measurements of a tet-operator repeat insert in U2OS cells, which provided the first in vivo signatures of subnuclear complexes. Furthermore, we have successfully implemented an optional optical configuration allowing the generation of high-resolution localization microscopy images of a nuclear pore complex distribution.

Key words

FPALM live cell imaging localization microscopy nanosizing PALM PALMIRA SALM SMI microscopy SPDM STORM Vertico-SMI microscope 


  1. Albrecht B, Failla AV, Heintzmann R, Cremer C (2001) Spatially modulated illumination microscopy: Online visualization of intensity distribution and prediction of nanometer precision of axial distance measurements by computer simulations. J Biomed Opt 6: 292–299.PubMedCrossRefGoogle Scholar
  2. Albrecht B, Failla AV, Schweitzer A, Cremer C (2002) Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range. Appl Opt 41: 80–87.PubMedCrossRefGoogle Scholar
  3. Baddeley D, Batram C, Weiland Y, Cremer C, Birk UJ (2007) Nanostructure analysis using spatially modulated illumination microscopy. Nat Protoc 2: 2640–2646.PubMedCrossRefGoogle Scholar
  4. Bailey B, Farkas DL, Taylor DL, Lanni F (1993) Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366: 44–48.PubMedCrossRefGoogle Scholar
  5. Betzig E, Patterson GH, Sougrat R et al. (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793): 1642.PubMedCrossRefGoogle Scholar
  6. Bornfleth H, Sätzler K, Eils R, Cremer C (1998) High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. J Microsc 189(2): 118–136.CrossRefGoogle Scholar
  7. Cremer C, Hausmann M, Bradl J, Rinke B (1996) Verfahren zur multispektralen Präzisionsdistanzmessung in biologischen Mikroobjekten(Procedure for multispectral precision distance measurements in biological microobjects). German Patent application No. 196.54. 824.1/DE, submitted Dec 23, 1996. European Patent EP 1997953660, 08.04.1999; Japanese Patent JP 1998528237, 23.06.1999; United States Patent US 09331644, 25.08.1999.Google Scholar
  8. Cremer C, Edelmann P, Bornfleth H et al. (1999) Principles of spectral precision distance confocal microscopy for the analysis of molecular nuclear structure. In: Jähne B, Haußecker H, Geißler P, eds. Handbook of Computer Vision and Applications. San Diego: Academic Press 3(41): 839–885.Google Scholar
  9. Cremer C, Failla AV, Albrecht B (2007) Far field light microscopical method, system and computer program product for analyzing at least one object having a subwavelength size. US Patent 7,298,461 B2, filed Oct 9, 2001.Google Scholar
  10. Dietzel S, Schiebel K, Little G et al. (1999) The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp Cell Res 252(2): 363–375.PubMedCrossRefGoogle Scholar
  11. Donnert G, Keller J, Medda R et al. (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103(31): 11440.PubMedCrossRefGoogle Scholar
  12. Dyba M, Hell S (2002) Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys Rev Lett 88(16): 163901.PubMedCrossRefGoogle Scholar
  13. Egner A, Jakobs S, Hell S (2002) Fast 100 nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci U S A 99(6): 3370–3375.PubMedCrossRefGoogle Scholar
  14. Esa A, Edelmann P, Kreth G et al. (2000) Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome. J Microsc 199(2): 96–105.PubMedCrossRefGoogle Scholar
  15. Esa A, Coleman AE, Edelmann P, Silva S, Cremer C, Janz S (2001) Conformational differences in the 3-D nanostructure of the immunoglobulin heavy-chain locus, a hotspot of chromosomal translocations in B lymphocytes. Cancer Genet Cytogenet 127(2): 168–173.PubMedCrossRefGoogle Scholar
  16. Failla A, Cavallo A, Cremer C (2002a) Subwavelength size determination by spatially modulated illumination virtual microscopy. Appl Opt 41: 6651–6659.CrossRefGoogle Scholar
  17. Failla AV, Spöri U, Albrecht B, Kroll A, Cremer C (2002b) Nanosizing of fluorescent objects by spatially modulated illumination microscopy. Appl Opt 41(34): 7275–7283.CrossRefGoogle Scholar
  18. Failla AV, Albrecht B, Spöri U et al. (2003) Nanostructure analysis using spatially modulated illumination microscopy. ComPlexUs 1: 77–88.CrossRefGoogle Scholar
  19. Frohn J, Knapp H, Stemmer A (2000) True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proc Natl Acad Sci U S A 97(13): 7232–7236.PubMedCrossRefGoogle Scholar
  20. Frohn J, Knapp H, Stemmer A (2001) Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation. Opt Lett 26(11): 828–830.PubMedCrossRefGoogle Scholar
  21. Geisler C et al. (2007) Resolution of λ/10 in fluorescence microscopy using fast single molecule photo-switching. Appl Phys A: Mater Sci Process 88(2): 223–226.CrossRefGoogle Scholar
  22. Gustafsson M (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37): 13081–13086.PubMedCrossRefGoogle Scholar
  23. Gustafsson M, Agard D, Sedat J (1995) Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. Proc SPIE 2412: 147–156.CrossRefGoogle Scholar
  24. Gustafsson M, Agard D, Sedat J (1996) 3D widefield microscopy with two objective lenses: experimental verification of improved axial resolution. Proc SPIE 2655: 62–65.CrossRefGoogle Scholar
  25. Heilemann M, Herten DP, Heintzmann R et al. (2002) High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. Anal Chem 74(14): 3511–3517.PubMedCrossRefGoogle Scholar
  26. Heilemann M, Tinnefeld P, Sanchez Mosteiro G, Garcia Parajo M, VanHulst NF, Sauer M (2004) Multistep energy transfer in single molecular photonic wires. J Am Chem Soc 126(21): 6514–6515.PubMedCrossRefGoogle Scholar
  27. Heintzmann R, Jovin T, Cremer C (2002) Saturated patterned excitation microscopy - aconcept for optical resolution improvement. J Opt Soc Am A 19(8): 1599–1609.CrossRefGoogle Scholar
  28. Hell S, Lindek S, Cremer C, Stelzer E (1994) Measurement of 4pi-confocal point spread function proves 75 nm axial resolution. Appl Phys Lett 64(11): 1335–1337.CrossRefGoogle Scholar
  29. Hendzel M, Bazett-Jones D (1997) Fixation-dependent organization of core histones following DNA fluorescent in situ hybridization. Chromosoma 106(2): 114–123.PubMedCrossRefGoogle Scholar
  30. Hess ST, Girirajan T, Mason M (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11): 4258.PubMedCrossRefGoogle Scholar
  31. Hess ST, Gould TJ, Gudheti MV, Maas SA, Mills KD, ZimmerbergJ (2007) Dynamic clustered distribution of hemagglutinin resolved at 40nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci U S A 104(44): 17370–17375.PubMedCrossRefGoogle Scholar
  32. Hildenbrand G, Rapp A, Spöri U, Wagner C, Cremer C, Hausmann M (2005) Nano-sizing of specific gene domains in intact human cell nuclei by spatially modulated illumination light microscopy. Biophys J 88(6): 4312–4318.PubMedCrossRefGoogle Scholar
  33. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimension super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864): 810-813.PubMedCrossRefGoogle Scholar
  34. Klar T, Jakobs S, Dyba M, Egner A, Hell S (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97: 8206–8210.PubMedCrossRefGoogle Scholar
  35. Kozubek S, Lukasova E, Amrichova J, Kozubek M, Liskova A, Slotova J (2000) Influence of cell fixation on chromatin topography. Anal Biochem 282(1): 29–38.PubMedCrossRefGoogle Scholar
  36. Lanni F, Taylor DL, Waggoner AS (1986) Standing wave luminescence microscopy. US Patent 4,621,911.Google Scholar
  37. Lidke AK, Rieger B, Jovin TM, Heintzmann R (2005) Superresolution by localization of quantum dots using blinking statistics. Optics Express 13(18): 7052–7062.CrossRefGoogle Scholar
  38. Martin S, Failla AV, Spöri U, Cremer C, Pombo A (2004) Measuring the size of biological nanostructures with spatially modulated illumination microscopy. Mol Biol Cell 15(5): 2449.PubMedCrossRefGoogle Scholar
  39. Mathée H, Baddeley D, Wotzlaw C, Fandrey J, Cremer C, Birk U (2006) Nanostructure of specific chromatin regions and nuclear complexes. Histochem Cell Biol 125(1):75–82.PubMedCrossRefGoogle Scholar
  40. Rauch J, Knoch TA, Solovei I et al. (2008) Lightoptical precision measurements of the active and inactive Prader–Willi syndrome imprinted regions in human cell nuclei. Differentiation 76(1): 66–83.PubMedGoogle Scholar
  41. Rust M, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3: 793–796.PubMedCrossRefGoogle Scholar
  42. Spöri U, Failla A, Cremer C (2004) Superresolution size determination in fluorescence microscopy: a comparison between spatially modulated illumination and confocal laser scanning microscopy. J Appl Phys 95: 8436–8443.CrossRefGoogle Scholar
  43. van Oijen A, Köhler J, Schmidt J, Müller M, Brakenhoff GJ (1998) 3-Dimensional super-resolution by spectrally selective imaging. Chem Phys Lett 292: 183–187.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Jürgen Reymann
    • 1
  • David Baddeley
    • 1
  • Manuel Gunkel
    • 1
  • Paul Lemmer
    • 1
  • Werner Stadter
    • 2
  • Thibaud Jegou
    • 3
  • Karsten Rippe
    • 3
  • Christoph Cremer
    • 1
    • 4
  • Udo Birk
    • 1
    • 5
  1. 1.Applied Optics and Information Processing, Kirchhoff Institute of PhysicsUniversity of HeidelbergHeidelbergGermany
  2. 2.University of Applied SciencesHamburgGermany
  3. 3.Research Group Genome Organization and Function, German Cancer Research Centre (DKFZ) & Bioquant CentreUniversity of HeidelbergHeidelbergGermany
  4. 4.Institute for Pharmacy and Molecular Biotechnology (IPMB)/Bioquant CentreUniversity of Heidelberg, Germany & Institute for Molecular Biophysics, The Jackson LaboratoryBar HarborUSA
  5. 5.In-vivo Optical Imaging GroupInstitute of Electronic Structure and Laser, FORTHHeraklionGreece

Personalised recommendations