Chromosome Research

, Volume 16, Issue 5, pp 701–708 | Cite as

Pairing and synapsis in wild type Arabidopsis thaliana

  • Eva López
  • Mónica Pradillo
  • Concepción Romero
  • Juan L. Santos
  • Nieves Cuñado
Article

Abstract

A spreading technique was used to perform a structural analysis of prophase I nuclei in pollen mother cells (PMCs) of wild-type Arabidopsis thaliana. In leptotene, all chromosomes developed fully axial elements before a presynaptic alignment was observed. Pairing and synapsis start in regions close to the telomeres at early zygotene. Interstitial synaptonemal complex (SC) stretches were found to occur at several sites per bivalent at mid zygotene. Within individual bivalents, extensive regions of SC formation often existed at the same time as other extensive regions that were unsynapsed. Also in the same nucleus, one bivalent might have several SC segments, while other bivalents have only a few. The classical bouquet was not so evident as in other plant species. Length measurements of the five pachytene bivalents have allowed the elaboration of a pachytene karyotype. Pachytene chromatin compaction in Arabidopsis was significantly less than that observed in the other species analysed and this is paralleled with a higher recombination rate (centimorgans per megabase).

Key words

Arabidopsis chromatin compaction synaptonemal complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abirached-Darmency M, Zickler D, Cauderon Y (1983) Synaptonemal complex and recombination nodules in rye (Secale cereale). Chromosoma 88: 299–306.CrossRefGoogle Scholar
  2. Akhunov ED, Goodyear AW, Geng S et al. (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13: 753–763.PubMedCrossRefGoogle Scholar
  3. Albini SM (1994) A karyotype of the Arabidopsis thaliana genome derived from synaptonemal complex analysis at prophase I of meiosis. Plant J 5: 665–672.CrossRefGoogle Scholar
  4. Anderson LK, Stack SM, Fox MH, Chuanshan Z (1985) The relationship between genome size and synaptonemal complex length in higher plants. Exp Cell Res 156: 367–378.PubMedCrossRefGoogle Scholar
  5. Anderson LK, Doyle GG, Brigham B et al. (2003) High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165: 849–865.PubMedGoogle Scholar
  6. Armstrong SJ, Franklin FC, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114: 4207–4217.PubMedGoogle Scholar
  7. Caryl AP, Jones GH, Franklin FC (2003) Dissecting plant meiosis using Arabidopsis thaliana mutants. J Exp Bot 54: 25–38.PubMedCrossRefGoogle Scholar
  8. Cowan CR, Carlton PM, Cande WZ (2001) The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant Physiol 125: 532–538.PubMedCrossRefGoogle Scholar
  9. Cuñado N, Santos JL (1998) A method for fluorescence in situ hybridization against synaptonemal complex-associated chromatin of plant meiocytes. Exp Cell Res 239: 179–182.PubMedCrossRefGoogle Scholar
  10. Cuñado N, Callejas S, García MJ, Fernández A, Santos JL (1996a) The pattern of zygotene and pachytene pairing in allotetraploid Aegilops species sharing the U genome. Theor Appl Genet 93: 1152–1155.CrossRefGoogle Scholar
  11. Cuñado N, García MJ, Callejas S, Fernández A, Santos JL (1996b) The pattern of zygotene and pachytene pairing in allotetraploid Aegilops species sharing the D genome. Theor Appl Genet 93: 1175–1179.CrossRefGoogle Scholar
  12. Davies A, Jemkins G, Rees H (1990) Diploidisation of Lotus corniculatus L. (Fabaceae) by elimination of multivalents. Chromosoma 99: 289–295.CrossRefGoogle Scholar
  13. Drouaud J, Mercier R, Chelysheva L et al. (2007) Sex-specific crossover distributions and variations in interference level along Arabidopsis thaliana chromosome 4. PLoS Genet 3: e106.PubMedCrossRefGoogle Scholar
  14. Gillies CB (1975) An ultrastructural analysis of chromosome pairing in maize. CR Trav Lab Carlsberg 40: 135–161.Google Scholar
  15. Gillies CB (1985) An electron microscopic study of synaptonemal complex formation at zygotene in rye. Chromosoma 92: 165–175.CrossRefGoogle Scholar
  16. Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20: 589–600.PubMedCrossRefGoogle Scholar
  17. Hamant O, Ma H, Cande WZ (2006) Genetics of meiotic prophase I in plants. Annu Rev Plant Biol 57: 267–302.PubMedCrossRefGoogle Scholar
  18. Hasenkampf CA (1984) Synaptonemal complex formation in pollen mother cells of Tradescantia. Chromosoma 90: 275–284.CrossRefGoogle Scholar
  19. Hobolth P (1981) Chromosome pairing in allohexaploid wheat var. Chinese Spring. Transformation of multivalents in bivalents, a mechanism for exclusive bivalent formation. Carlsberg Res Commun 46: 129–173.CrossRefGoogle Scholar
  20. Holm PB (1977) Three-dimensional reconstruction of chromosome pairing during the zygotene stage of meiosis in Lilium longiflorum (Thunb.). Carlsberg Res Commun 42: 103–151.CrossRefGoogle Scholar
  21. Jackson RC, Casey J (1982) Cytogenetic analysis of autopolyploids: models and methods for triploids to octoploids. Am J Bot 69: 487–501.CrossRefGoogle Scholar
  22. Kleckner N, Storlazzi A, Zickler D (2003) Coordinate variation in meiotic pachytene SC length and total crossover/chiasma frequency under conditions of constant DNA length. Trends Genet 19: 623–628.PubMedCrossRefGoogle Scholar
  23. Koornneef M, Fransz P, de Jong, H (2003) Cytogenetic tools for Arabidopsis thaliana. Chromosome Res 11: 183–194.PubMedCrossRefGoogle Scholar
  24. Loidl J (1994) Cytological aspects of meiotic recombination. Experientia 50: 285–294.PubMedCrossRefGoogle Scholar
  25. Lynn A, Koehler KE, Judis L et al. (2002) Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science 296: 2222–2225.PubMedCrossRefGoogle Scholar
  26. Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56: 393–434.PubMedCrossRefGoogle Scholar
  27. Martínez M, Cuñado N, Carcelén N, Romero C (2001) The Ph1 and Ph2 loci play different roles in the synaptic behaviour of hexaploid wheat Triticum aestivum. Theor Appl Genet 103: 398–405.CrossRefGoogle Scholar
  28. Milczarski P, Banek-Tabor A, Lebiecka K, Stojalowski S, Myskow B, Masojc P (2007) New genetic map of rye composed of PCR-based molecular markers and its alignment with the reference map of the DS2 x RXL10 intercross. J Appl Genet 48: 11–24.PubMedGoogle Scholar
  29. Peterson DG, Stack SM, Healy JL, Donohoe BS, Anderson LK (1994) The relationship between synaptonemal complex length and genome size in four vertebrate classes (Osteicthyes, Reptilia, Aves, Mammalia). Chromosome Res 2: 153–162.PubMedCrossRefGoogle Scholar
  30. Ross KJ, Fransz P, Jones GH (1996) A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res 4: 507–516.PubMedCrossRefGoogle Scholar
  31. Santos JL, Alfaro D, Sanchez-Moran E, Armstrong SJ, Franklin FC, Jones GH (2003) Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics 165: 1533–1540.PubMedGoogle Scholar
  32. Stack SM, Anderson LK (1986) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. II. Synapsis in Lycopersicon sculentum (tomato). Am J Bot 73: 264–281.CrossRefGoogle Scholar
  33. Sybenga J (1975) Meiotic Configurations. Berlin: Springer-Verlag.Google Scholar
  34. Tanksley SD, Ganal MW, Prince JP et al. (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.PubMedGoogle Scholar
  35. Tease C, Hulten MA (2004) Inter-sex variation in synaptonemal complex lengths largely determine the different recombination rates in male and female germ cells. Cytogenet Genome Res 107: 208–215.PubMedCrossRefGoogle Scholar
  36. Zickler D, Kleckner N (1998) The leptotene-zygotene transition of meiosis. Annu Rev Genet 32: 619–697.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Eva López
    • 1
  • Mónica Pradillo
    • 1
  • Concepción Romero
    • 1
  • Juan L. Santos
    • 1
  • Nieves Cuñado
    • 1
  1. 1.Departamento de Genética, Facultad de BiologíaUniversidad ComplutenseMadridSpain

Personalised recommendations