Chromosome Research

, Volume 16, Issue 1, pp 129–143 | Cite as

Phylogenomics of the dog and fox family (Canidae, Carnivora) revealed by chromosome painting

  • Alexander S. Graphodatsky
  • Polina L. Perelman
  • Natalya V. Sokolovskaya
  • Violetta R. Beklemisheva
  • Natalya A. Serdukova
  • Gauthier Dobigny
  • Stephen J. O’Brien
  • Malcolm A. Ferguson-Smith
  • Fengtang Yang


Canid species (dogs and foxes) have highly rearranged karyotypes and thus represent a challenge for conventional comparative cytogenetic studies. Among them, the domestic dog is one of the best-mapped species in mammals, constituting an ideal reference genome for comparative genomic study. Here we report the results of genome-wide comparative mapping of dog chromosome-specific probes onto chromosomes of the dhole, fennec fox, and gray fox, as well as the mapping of red fox chromosome-specific probes onto chromosomes of the corsac fox. We also present an integrated comparative chromosome map between the species studied here and all canids studied previously. The integrated map demonstrates an extensive conservation of whole chromosome arms across different canid species. In addition, we have generated a comprehensive genome phylogeny for the Canidae on the basis of the chromosome rearrangements revealed by comparative painting. This genome phylogeny has provided new insights into the karyotypic relationships among the canids. Our results, together with published data, allow the formulation of a likely Canidae ancestral karyotype (CAK, 2n = 82), and reveal that at least 6–24 chromosomal fission/fusion events are needed to convert the CAK karyotype to that of the modern canids.

Key words

Canidae Carnivora chromosome maps chromosome painting evolution genome phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10577_2007_1203_Fig1_ESM.jpg (501 kb)
Supplementary Figure S1 Diploid G-banded karyotype of fennec fox and gray fox. Summary of hybridization pattern of domestic dog probes onto G-banded fennec fox and gray fox chromosomes (JPEG 501 kb)
10577_2007_1203_Fig2_ESM.jpg (770 kb)
Supplementary Figure S2 A single tree retrieved from PAUP analysis of 88 characters rooted on bears, with changes mapped onto the topology. Bootstrap values are provided above branches (JPEG 769 kb)
10577_2007_1203_MOESM3_ESM.xls (96 kb)
Supplementary Table S1 Matrix of chromosomal characters corresponding to presence (1) or absence (0) of segmental associations of dog chromosomal fragments (XLS 96 kb)


  1. Bardeleben C, Moore RL, Wayne RK (2005) A molecular phylogeny of the Canidae based on six nuclear loci. Mol Phylogenet Evol 37: 815–831.PubMedCrossRefGoogle Scholar
  2. Biltueva L, Yang F, Vorobieva NV, Graphodatsky AS (2004) Comparative map between the domestic pig and dog. Mamm Genome 15: 809–818.PubMedCrossRefGoogle Scholar
  3. Bininda-Emonds ORP, Gittleman J, Purvis A (1999) Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev 74: 143–173.PubMedCrossRefGoogle Scholar
  4. Bininda-Emonds ORB, Cardillo M, Jones KE et al. (2007) The delayed rise of present-day mammals. Nature 446: 507–512.PubMedCrossRefGoogle Scholar
  5. Breen M, Thomas R, Binns MM, Carter NP, Langford CF (1999) Reciprocal chromosome painting revealed detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. Genomics 61: 145–155.PubMedCrossRefGoogle Scholar
  6. Breen M, Hitte C, Lorentzen TD et al. (2004) An integrated 4249 marker FISH/RH map of the canine genome. BMC Genomics 5: 65.PubMedCrossRefGoogle Scholar
  7. Cavagna P, Menotti A, Stanyon R (2000) Genomic homology of the domestic ferret with cats and humans. Mamm Genome 11: 866–870.PubMedCrossRefGoogle Scholar
  8. Dobigny G, Ducroz JF, Robinson TJ, Volobouev V (2004) Cytogenetics and cladistics. Syst Biol 53: 470–484.PubMedCrossRefGoogle Scholar
  9. Froenicke L, Muller-Navia K, Romanakis K, Scherthan H (1997) Zoo-FISH maps of the harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype. Chromosoma 106: 108–113.CrossRefGoogle Scholar
  10. Graphodatsky AS (2007) Comparative chromosomics. Mol Biol (Russ) 41: 408–422.Google Scholar
  11. Graphodatsky AS, Radjabli SI (1981) Comparative cytogenetics of three canids species. Genetica (Russ) 17: 1498–1504.Google Scholar
  12. Graphodatsky AS, Beklemisheva VR, Dolf G (1995) High resolution GTG-banding patterns of dog and silver fox chromosomes description and comparative analysis. Cytogenet Cell Genet 69: 226–231.PubMedGoogle Scholar
  13. Graphodatsky AS, Yang F, O’Brien PC et al. (2000a) A comparative chromosome map of the Arctic fox, red fox and dog defined by chromosome painting and high resolution G-banding. Chromosome Res 8: 253–263.PubMedCrossRefGoogle Scholar
  14. Graphodatsky AS, Yang F, Serdukova N, Perelman P, Zhdanova N, Ferguson-Smith MA (2000b) Dog chromosome-specific paints reveal evolutionary inter- and intrachromosomal rearrangements in the American mink and human. Cytogenet Cell Genet 90: 275–278.PubMedCrossRefGoogle Scholar
  15. Graphodatsky AS, Yang F, O’Brien PCM et al. (2001) Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet Cell Genet 92: 243–247.PubMedCrossRefGoogle Scholar
  16. Graphodatsky AS, Yang F, Perelman P et al. (2002) Comparative molecular cytogenetic studies in the order Carnivora: mapping chromosomal rearrangements onto the phylogenetic tree. Cytogenet Genome Res 96: 137–145.PubMedCrossRefGoogle Scholar
  17. Gustavsson I, Sundt CO (1967) Chromosome elimination in the evolution of the silver fox. J Hered 58: 75–78.PubMedGoogle Scholar
  18. Hameister H, Klett C, Bruch J, Dixkens C, Vogel W, Christensen K (1997) Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chromosome Res 5: 5–11.PubMedCrossRefGoogle Scholar
  19. Kukekova AV, Trut LN, Oskina IN et al. (2007) A meiotic linkage map of the silver fox. Genome Res 17: 387–399.PubMedCrossRefGoogle Scholar
  20. Lindblad-Toh K, Wade CM, Mikkelsen TS et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438: 803–819.PubMedCrossRefGoogle Scholar
  21. Mäkinen A, Gustavsson I (1982) A comparative chromosome-banding study in the silver fox, the blue fox, and their hybrids. Hereditas 97: 289–297.CrossRefGoogle Scholar
  22. Murphy WJ, Stanyon R, O’Brien SJ (2001) Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol 2: 0005.1–0005.8.CrossRefGoogle Scholar
  23. Nash WG, Wienberg J, Ferguson-Smith MA, Menninger JC, O’Brien SJ (1998) Comparative genomics: tracking chromosome evolution in the family Ursidae using reciprocal chromosome painting. Cytogenet Cell Genet 83: 182–192.PubMedCrossRefGoogle Scholar
  24. Nash WG, Menninger JC, Wienberg J, Padilla-Nash HM, O’Brien SJ (2001) The pattern of phylogenomic evolution of the Canidae. Cytogenet Cell Genet 95: 210–224.PubMedCrossRefGoogle Scholar
  25. Nie W, Wang J, O’Brien PCM et al. (2002) The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding. Chromosome Res 10: 209–222.PubMedCrossRefGoogle Scholar
  26. Nie W, Wang J, Perelman P, Graphodatsky AS, Yang F (2003) Comparative chromosome painting defines the karyotypic relationships among the domestic dog, Chinese raccoon dog and Japanese raccoon dog. Chromosome Res 11: 735–740.PubMedCrossRefGoogle Scholar
  27. Perelman PL, Graphodatsky AS, Serdukova NA et al. (2005) Karyotypic conservatism in the Suborder Feliformia (Order Carnivora). Cytogenet Genome Res 108: 348–354.PubMedCrossRefGoogle Scholar
  28. Rettenberger G, Klett Ch, Zechner U et al. (1995) Zoo-FISH analysis: cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chromosome Res 3: 479–486.PubMedCrossRefGoogle Scholar
  29. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2: 971–972.PubMedCrossRefGoogle Scholar
  30. Swofford DL (1998) PAUP (1998). Phylogenetic Analysis Using Parsimony, version 4.0. Sunderland, MA: Sinauer Associates.Google Scholar
  31. Tian Y, Nie W, Wang J, Yang F, Ferguson-Smith MA (2004) Chromosome evolution in bears: reconstructing phylogenetic relationships by cross-species chromosome painting. Chromosome Res 12: 55–63.PubMedCrossRefGoogle Scholar
  32. Trifonov VA, Perelman PL, Kawada SI, Iwasa MA, Oda SI, Graphodatsky AS (2002) Complex structure of B-chromosomes in two mammalian species: Apodemus peninsulae (Rodentia) and Nyctereutes procyonoides (Carnivora). Chromosome Res 10: 109–116.PubMedCrossRefGoogle Scholar
  33. Vila C, Maldonado JE, Wayne RK (1999) Phylogenetic relationships, evolution, and genetic diversity of the domestic dog. J Hered 90: 71–77.PubMedCrossRefGoogle Scholar
  34. Wayne RK, Nash WG, O’Brien SJ (1987a) Chromosome evolution of the Canidae I: species with high diploid numbers. Cytogenet Cell Genet 44: 123–133.PubMedGoogle Scholar
  35. Wayne RK, Nash WG, O’Brien SJ (1987b) Chromosome evolution of the Canidae II: divergence from the primitive carnivore karyotype. Cytogenet Cell Genet 44: 134–141.PubMedGoogle Scholar
  36. Wayne RK, Geffen E, Girman DJ, Koepfli KP, Lau LM, Marshall CR (1997) Molecular systematics of the Canidae. Syst Biol 46: 622–653.PubMedCrossRefGoogle Scholar
  37. Wienberg J, Stanyon R, Nash WG et al. (1997) Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet 77: 211–217.PubMedCrossRefGoogle Scholar
  38. Yang F, Graphodatsky AS (2004) Integrated comparative genome maps and their implications for karyotype evolution of carnivores. In: Schmid M, Nanda I, eds. Chromosomes Today, Vol. 14. Dordrecht: Kluwer Academic Publishers, pp. 215–224.Google Scholar
  39. Yang F, O’Brien PC, Milne BS et al. (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62: 189–202.PubMedCrossRefGoogle Scholar
  40. Yang F, Graphodatsky AS, O’Brien PCM et al. (2000) Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res 8: 393–404.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Alexander S. Graphodatsky
    • 1
  • Polina L. Perelman
    • 1
    • 2
  • Natalya V. Sokolovskaya
    • 1
  • Violetta R. Beklemisheva
    • 1
  • Natalya A. Serdukova
    • 1
  • Gauthier Dobigny
    • 3
  • Stephen J. O’Brien
    • 2
  • Malcolm A. Ferguson-Smith
    • 4
  • Fengtang Yang
    • 5
  1. 1.Institute of Cytology and Genetics, SB RASNovosibirskRussia
  2. 2.Laboratory of Genomic DiversityNational Cancer InstituteFrederickUSA
  3. 3.Institut de Recherche pour le Développement, Centre de Biologie et Gestion des PopulationsCampus International de Baillarguet, CS30016Montferrier-sur-LezFrance
  4. 4.Cambridge Resource Centre for Comparative Genomics, Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
  5. 5.The Wellcome Trust Sanger InstituteCambridgeUK

Personalised recommendations