Chromosome Research

, Volume 16, Issue 1, pp 203–215 | Cite as

Transposable elements as drivers of genomic and biological diversity in vertebrates

  • Astrid Böhne
  • Frédéric Brunet
  • Delphine Galiana-Arnoux
  • Christina Schultheis
  • Jean-Nicolas Volff
Article

Abstract

Comparative genomics has revealed that major vertebrate lineages contain quantitatively and qualitatively different populations of retrotransposable elements and DNA transposons, with important differences also frequently observed between species of the same lineage. This is essentially due to (i) the differential evolution of ancestral families of transposable elements, with evolutionary scenarios ranging from complete extinction to massive invasion; (ii) the lineage-specific introduction of transposable elements by infection and horizontal transfer, as exemplified by endogenous retroviruses; and (iii) the lineage-specific emergence of new transposable elements, as particularly observed for non-coding retroelements called short interspersed elements (SINEs). During vertebrate evolution, transposable elements have repeatedly contributed regulatory and coding sequences to the host, leading to the emergence of new lineage-specific gene regulations and functions. In all vertebrate lineages, there is evidence of transposable element-mediated genomic rearrangements such as insertions, deletions, inversions and duplications potentially associated with or subsequent to speciation events. Taken together, these observations indicate that transposable elements are major drivers of genomic and biological diversity in vertebrates, with possible important roles in speciation and major evolutionary transitions.

Key words

biodiversity evolution genome transposable element vertebrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrusan G, Krambeck HJ (2006) Competition may determine the diversity of transposable elements. Theor Popul Biol 70: 364–375.PubMedCrossRefGoogle Scholar
  2. Agrawal A, Eastman QM, Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744–751.PubMedCrossRefGoogle Scholar
  3. Antony JM, van Marle G, Opii W et al. (2004) Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 7: 1088–1095.PubMedCrossRefGoogle Scholar
  4. Aparicio S, Chapman J, Stupka E et al. (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297: 1301–1310.PubMedCrossRefGoogle Scholar
  5. Ayala FJ, Coluzzi M (2005) Chromosome speciation: humans, Drosophila, and mosquitoes. Proc Natl Acad Sci USA 102 (Supplement 1): 6535–6542.PubMedCrossRefGoogle Scholar
  6. Bejerano G, Lowe CB, Ahituv N et al. (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441: 87–90.PubMedCrossRefGoogle Scholar
  7. Belshaw R, Katzourakis A, Paces J, Burt A, Tristem M (2005) High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol Biol Evol 22: 814–817.PubMedCrossRefGoogle Scholar
  8. Best S, Le Tissier P, Towers G, Stoye JP (1996) Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382: 826–829.PubMedCrossRefGoogle Scholar
  9. Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443: 521–524.PubMedCrossRefGoogle Scholar
  10. Blaise S, de Parseval N, Benit L, Heidmann T (2003) Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci USA 100: 13013–13018.PubMedCrossRefGoogle Scholar
  11. Boissinot S, Furano AV (2001) Adaptive evolution in LINE-1 retrotransposons. Mol Biol Evol 18: 2186–2194.PubMedGoogle Scholar
  12. Bouneau L, Fischer C, Ozouf-Costaz C et al. (2003) An active non-LTR retrotransposon with tandem structure in the compact genome of the pufferfish Tetraodon nigroviridis. Genome Res 13: 1686–1695.PubMedCrossRefGoogle Scholar
  13. Brandt J, Schrauth S, Veith AM et al. (2005) Transposable elements as a source of genetic innovation: expression and evolution of a family of retrotransposon-derived neogenes in mammals. Gene 345: 101–111.PubMedCrossRefGoogle Scholar
  14. Bucheton A (1990) I transposable elements and I-R hybrid dysgenesis in Drosophila. Trends Genet 6: 16–21.PubMedCrossRefGoogle Scholar
  15. Campillos M, Doerks T, Shah PK, Bork P (2006) Computational characterization of multiple Gag-like human proteins. Trends Genet 22: 585–589.PubMedCrossRefGoogle Scholar
  16. Casavant NC, Scott L, Cantrell MA, Wiggins LE, Baker RJ, Wichman HA (2000) The end of the LINE?: lack of recent L1 activity in a group of South American rodents. Genetics 154: 1809–1817.PubMedGoogle Scholar
  17. Casola C, Hucks D, Feschotte C (2007) Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol Biol Evol (Oct 16); [Epub ahead of print].Google Scholar
  18. Chen JM, Stenson PD, Cooper DN, Ferec C (2005) A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 117: 411–427.PubMedCrossRefGoogle Scholar
  19. Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437: 69–87.CrossRefGoogle Scholar
  20. Cordaux R, Udit S, Batzer MA, Feschotte C (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA 103: 8101–8106.PubMedCrossRefGoogle Scholar
  21. Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4: 865–877.CrossRefGoogle Scholar
  22. Dasilva C, Hadji H, Ozouf-Costaz C et al. (2002) Remarkable compartmentalization of transposable elements and pseudogenes in the heterochromatin of the Tetraodon nigroviridis genome. Proc Natl Acad Sci USA 99: 13636–13641.PubMedCrossRefGoogle Scholar
  23. Dehal P, Satou Y, Campbell RK et al. (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298: 2157–2167.PubMedCrossRefGoogle Scholar
  24. Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13: 651–658.PubMedCrossRefGoogle Scholar
  25. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35: 41–48.PubMedCrossRefGoogle Scholar
  26. Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.PubMedCrossRefGoogle Scholar
  27. Dunlap KA, Palmarini M, Varela M et al. (2006). Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc Natl Acad Sci USA 103: 14390–14395.PubMedCrossRefGoogle Scholar
  28. Dupressoir A, Marceau G, Vernochet C et al. (2005) Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc Natl Acad Sci USA 102: 725–730.PubMedCrossRefGoogle Scholar
  29. Eickbush TH, Malik HS (2002) Origins and evolution of retrotransposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM, eds., Mobile DNA II, ASM Press, Washington, pp. 1111–1144.Google Scholar
  30. Evgen’ev MB, Arkhipova IR (2005) Penelope-like elements – a new class of retroelements: distribution, function and possible evolutionary significance. Cytogenet Genome Res 110: 510–521.PubMedCrossRefGoogle Scholar
  31. Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41: 331–368.PubMedCrossRefGoogle Scholar
  32. Fontdevila A (2005) Hybrid genome evolution by transposition. Cytogenet Genome Res 110: 49–55.PubMedCrossRefGoogle Scholar
  33. Furano AV, Duvernell DD, Boissinot S (2004) L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet 20: 9–14.PubMedCrossRefGoogle Scholar
  34. Gentles AJ, Wakefield MJ, Kohany O et al. (2007) Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res 17: 992–1004.PubMedCrossRefGoogle Scholar
  35. Gibbs RA, Weinstock GM, Metzker ML et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493–521.PubMedCrossRefGoogle Scholar
  36. Goodier JL, Ostertag EM, Du K, Kazazian HH Jr (2001) A novel active L1 retrotransposon subfamily in the mouse. Genome Res 11: 1677–1685.PubMedCrossRefGoogle Scholar
  37. Han JS, Boeke JD (2005) LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? Bioessays 27: 775–784.PubMedCrossRefGoogle Scholar
  38. Han K, Lee J, Meyer TJ et al. (2007) Alu recombination-mediated structural deletions in the chimpanzee genome. PLoS Genet 3: e184.CrossRefGoogle Scholar
  39. Horie K, Saito ES, Keng VW, Ikeda R, Ishihara H, Takeda J (2007) Retrotransposons influence the mouse transcriptome: implication for the divergence of genetic traits. Genetics 176: 815–827.PubMedCrossRefGoogle Scholar
  40. Ichiyanagi K, Nishihara H, Duvernell DD, Okada N (2007) Acquisition of endonuclease specificity during evolution of L1 retrotransposon. Mol Biol Evol 24: 2009–2015.PubMedCrossRefGoogle Scholar
  41. International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695–716.CrossRefGoogle Scholar
  42. Jaillon O, Aury JM, Brunet F et al. (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431: 946–957.PubMedCrossRefGoogle Scholar
  43. Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3: e181.PubMedCrossRefGoogle Scholar
  44. Kapitonov VV, Jurka J (2006) Self-synthesizing DNA transposons in eukaryotes. Proc Natl Acad Sci USA 103: 4540–4545.PubMedCrossRefGoogle Scholar
  45. Kapitonov VV, Jurka J (2007) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 23: 521–529.PubMedCrossRefGoogle Scholar
  46. Kasahara M, Naruse K, Sasaki S et al. (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447: 714–719.PubMedCrossRefGoogle Scholar
  47. Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303: 1626–1632.PubMedCrossRefGoogle Scholar
  48. Kehrer-Sawatzki H, Cooper DN (2007) Structural divergence between the human and chimpanzee genomes. Hum Genet 120: 759–778.PubMedCrossRefGoogle Scholar
  49. Kordis D, Gubensek F (1998) Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. Proc Natl Acad Sci USA 95: 10704–10709.PubMedCrossRefGoogle Scholar
  50. Krull M, Petrusma M, Makalowski W, Brosius J, Schmitz J (2007) Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs). Genome Res 17: 1139–1145.PubMedCrossRefGoogle Scholar
  51. Krylov DM, Koonin EV (2001) A novel family of predicted retroviral-like aspartyl proteases with a possible key role in eukaryotic cell cycle control. Curr Biol 11: R584–R587.PubMedCrossRefGoogle Scholar
  52. Kuryshev VY, Skryabin BV, Kremerskothen J, Jurka J, Brosius J (2001) Birth of a gene: locus of neuronal BC200 snmRNA in three prosimians and human BC200 pseudogenes as archives of change in the Anthropoidea lineage. J Mol Biol 309: 1049–1066.PubMedCrossRefGoogle Scholar
  53. Lander ES, Linton LM, Birren B et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.PubMedCrossRefGoogle Scholar
  54. Lindblad-Toh K, Wade CM, Mikkelsen TS et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438: 803–819.PubMedCrossRefGoogle Scholar
  55. Lowe CB, Bejerano G, Haussler D (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Natl Acad Sci USA 104: 8005–8010.PubMedCrossRefGoogle Scholar
  56. Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605.PubMedCrossRefGoogle Scholar
  57. Lyon MF (2000) LINE-1 elements and X chromosome inactivation: a function for “junk” DNA? Proc Natl Acad Sci USA 97: 6248–6249.PubMedCrossRefGoogle Scholar
  58. Mallet F, Bouton O, Prudhomme S et al. (2004) The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci USA 101: 1731–1736.PubMedCrossRefGoogle Scholar
  59. Masly JP, Jones CD, Noor MA, Locke J, Orr HA (2006) Gene transposition as a cause of hybrid sterility in Drosophila. Science 313: 1448–1450.PubMedCrossRefGoogle Scholar
  60. Mi S, Lee X, Li XP et al. (2000). Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785–789.PubMedCrossRefGoogle Scholar
  61. Mikkelsen TS, Wakefield MJ, Aken B et al. (2007) Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447: 167–177.PubMedCrossRefGoogle Scholar
  62. Mills RE, Bennett EA, Iskow RC et al. (2006) Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet 78: 671–679.PubMedCrossRefGoogle Scholar
  63. Mills RE, Bennett EA, Iskow RC, Devine SE (2007) Which transposable elements are active in the human genome? Trends Genet 23: 183–191.PubMedCrossRefGoogle Scholar
  64. Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.CrossRefGoogle Scholar
  65. Nakamura TM, Cech TR (1998) Reversing time: origin of telomerase. Cell 92: 587–590.PubMedCrossRefGoogle Scholar
  66. Navarro A, Barton NH (2003) Chromosomal speciation and molecular divergence - accelerated evolution in rearranged chromosomes. Science 300: 321–324.PubMedCrossRefGoogle Scholar
  67. Neafsey DE, Blumenstiel JP, Hartl DL (2004) Different regulatory mechanisms underlie similar transposable element profiles in pufferfish and fruitflies. Mol Biol Evol 21: 2310–2318.PubMedCrossRefGoogle Scholar
  68. Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17: 619–621.PubMedCrossRefGoogle Scholar
  69. Nishihara H, Smit AF, Okada N (2006) Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res 16: 864–874.PubMedCrossRefGoogle Scholar
  70. Noor MA, Chang AS (2006) Evolutionary genetics: jumping into a new species. Curr Biol 16: R890–R892.PubMedCrossRefGoogle Scholar
  71. O’Neill RJ, O’Neill MJ, Graves JA (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393: 68–72.PubMedCrossRefGoogle Scholar
  72. Ono R, Nakamura K, Inoue K et al. (2006) Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet 38: 101–106.PubMedCrossRefGoogle Scholar
  73. Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284: 604–607.PubMedCrossRefGoogle Scholar
  74. Pace JK II, Feschotte C (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17: 422–432.PubMedCrossRefGoogle Scholar
  75. Peaston AE, Evsikov AV, Graber JH et al. (2004). Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7: 597–606.PubMedCrossRefGoogle Scholar
  76. Pickeral OK, Makalowski W, Boguski MS, Boeke JD (2000) Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res 10: 411–415.PubMedCrossRefGoogle Scholar
  77. Piriyapongsa J, Marino-Ramirez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176: 1323–1337.PubMedCrossRefGoogle Scholar
  78. Piskurek O, Okada N (2007) Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals. Proc Natl Acad Sci USA 104: 12046–12051.PubMedCrossRefGoogle Scholar
  79. Poulter RT, Goodwin TJ (2005) DIRS-1 and the other tyrosine recombinase retrotransposons. Cytogenet Genome Res 110: 575–588.PubMedCrossRefGoogle Scholar
  80. Pritham EJ, Feschotte C (2007) Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci USA 104: 1895–1900.PubMedCrossRefGoogle Scholar
  81. Pritham EJ, Putliwala T, Feschotte C (2007) Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390: 3–17.PubMedCrossRefGoogle Scholar
  82. Pyatkov KI, Arkhipova IR, Malkova NV, Finnegan DJ, Evgen’ev MB (2004) Reverse transcriptase and endonuclease activities encoded by Penelope-like retroelements. Proc Natl Acad Sci USA 101: 14719–14724.PubMedCrossRefGoogle Scholar
  83. Ray DA, Xing J, Salem AH, Batzer MA (2006) SINEs of a nearly perfect character. Syst Biol 55: 928–935.PubMedCrossRefGoogle Scholar
  84. Rhesus Macaque Genome Sequencing and Analysis Consortium (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316: 222–234.CrossRefGoogle Scholar
  85. Ribet D, Dewannieux M, Heidmann T (2004) An active murine transposon family pair: retrotransposition of “master” MusD copies and ETn trans-mobilization. Genome Res 14: 2261–2267.PubMedCrossRefGoogle Scholar
  86. Santangelo AM, de Souza FS, Franchini LF, Bumaschny VF, LowMJ, Rubinstein M (2007) Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene. PLoS Genet 3: e166.CrossRefGoogle Scholar
  87. Schuller M, Jenne D, Voltz R (2005) The human PNMA family: novel neuronal proteins implicated in paraneoplastic neurological disease. J Neuroimmunol 169: 172–176.PubMedCrossRefGoogle Scholar
  88. Seleme MC, Vetter MR, Cordaux R, Bastone L, Batzer MA, Kazazian HH Jr. (2006) Extensive individual variation in L1 retrotransposition capability contributes to human genetic diversity. Proc Natl Acad Sci USA 103: 6611–6616.PubMedCrossRefGoogle Scholar
  89. Sen SK, Han K, Wang J et al. (2006) Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet 79: 41–53.PubMedCrossRefGoogle Scholar
  90. Shen CH, Steiner LA (2004) Genome structure and thymic expression of an endogenous retrovirus in zebrafish. J Virol 78: 899–911.PubMedCrossRefGoogle Scholar
  91. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8: 272–285.PubMedCrossRefGoogle Scholar
  92. Tarlinton RE, Meers J, Young PR (2006) Retroviral invasion of the koala genome. Nature 442: 79–81.PubMedCrossRefGoogle Scholar
  93. Thornburg BG, Gotea V, Makalowski W (2006) Transposable elements as a significant source of transcription regulating signals. Gene 365: 104–110.PubMedCrossRefGoogle Scholar
  94. Toth M, Grimsby J, Buzsaki G, Donovan GP (1995) Epileptic seizures caused by inactivation of a novel gene, jerky, related to centromere binding protein-B in transgenic mice. Nat Genet 11: 71–75.PubMedCrossRefGoogle Scholar
  95. van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19: 530–536.PubMedCrossRefGoogle Scholar
  96. Venkatesh B, Kirkness EF, Loh YH et al. (2007) Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biol 5: e101.PubMedCrossRefGoogle Scholar
  97. Vinckenbosch N, Dupanloup I, Kaessmann H (2006) Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA 103: 3220–3225.PubMedCrossRefGoogle Scholar
  98. Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28: 913–922.PubMedCrossRefGoogle Scholar
  99. Volff JN, Brosius J (2007) Modern genomes with retro-look: retrotransposed elements, retroposition and the origin of new genes. Genome Dyn 3: 175–190.CrossRefPubMedGoogle Scholar
  100. Volff JN, Korting C, Schartl M (2000) Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes. Mol Biol Evol 17: 1673–1684.PubMedGoogle Scholar
  101. Volff JN, Hornung U, Schartl M (2001a) Fish retroposons related to the Penelope element of Drosophila virilis define a new group of retrotransposable elements. Mol Genet Genomics 265: 711–720.CrossRefGoogle Scholar
  102. Volff JN, Korting C, Froschauer A, Sweeney K, Schartl M (2001b) Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates. J Mol Evol 52: 351–360.Google Scholar
  103. Volff JN, Korting C, Meyer A, Schartl M (2001c) Evolution and discontinuous distribution of Rex3 retrotransposons in fish. Mol Biol Evol 18: 427–431.Google Scholar
  104. Volff JN, Bouneau L, Ozouf-Costaz C, Fischer C (2003) Diversity of retrotransposable elements in compact pufferfish genomes. Trends Genet 19: 674–678.PubMedCrossRefGoogle Scholar
  105. Wang H, Xing J, Grover D et al. (2005) SVA elements: a hominid-specific retroposon family. J Mol Biol 354: 994–1007.PubMedCrossRefGoogle Scholar
  106. Wicker T, Robertson JS, Schulze SR et al. (2005) The repetitive landscape of the chicken genome. Genome Res 15: 126–136.PubMedCrossRefGoogle Scholar
  107. Xing J, Wang H, Belancio VP, Cordaux R, Deininger PL, Batzer MA (2006) Emergence of primate genes by retrotransposon-mediated sequence transduction. Proc Natl Acad Sci USA 103: 17608–17613.PubMedCrossRefGoogle Scholar
  108. Zdobnov EM, Campillos M, Harrington ED, Torrents D, Bork P (2005) Protein coding potential of retroviruses and other transposable elements in vertebrate genomes. Nucleic Acids Res 33: 946–954PubMedCrossRefGoogle Scholar
  109. Zhou Q, Froschauer A, Schultheis C et al. (2006) Helitron transposons on the sex chromosomes of the platyfish Xiphophorus maculatus and their evolution in animal genomes. Zebrafish 3: 39–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Astrid Böhne
    • 1
  • Frédéric Brunet
    • 1
  • Delphine Galiana-Arnoux
    • 1
  • Christina Schultheis
    • 1
  • Jean-Nicolas Volff
    • 1
  1. 1.Institut de Génomique Fonctionnelle de LyonUniversité de LyonEcole Normale Supérieure de LyonFrance

Personalised recommendations