Chromosome Research

, Volume 16, Issue 1, pp 89–107 | Cite as

Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla

  • Vladimir A. Trifonov
  • Roscoe Stanyon
  • Anastasia I. Nesterenko
  • Beiyuan Fu
  • Polina L. Perelman
  • Patricia C M O’Brien
  • Gary Stone
  • Nadezhda V. Rubtsova
  • Marlys L. Houck
  • Terence J. Robinson
  • Malcolm A. Ferguson-Smith
  • Gauthier Dobigny
  • Alexander S. Graphodatsky
  • Fengtang Yang


The order Perissodactyla, the group of odd-toed ungulates, includes three extant families: Equidae, Tapiridae, and Rhinocerotidae. The extremely rapid karyotypic diversification in perissodactyls has so far prevented the establishment of genome-wide homology maps between these three families by traditional cytogenetic approaches. Here we report the first genome-wide comparative chromosome maps of African rhinoceroses, four tapir species, four equine species, and humans. These maps were established by multidirectional chromosome painting, with paint probes derived from flow-sorted chromosomes of Equus grevyi, Tapirus indicus, and Ceratotherium simum as well as painting probes from horse and human. The Malayan tapir (Tapirus indicus), Baird’s tapir (T. bairdii), mountain tapir (T. pinchaque), lowland tapir (T. terrestris), and onager (E. hemionus onager), were studied by cross-species chromosome painting for the first time. Our results, when integrated with previously published comparative chromosome maps of the other perissodactyl species, have enabled the reconstruction of perissodactyl, ceratomorph, and equid ancestral karyotypes, and the identification of the defining evolutionary chromosomal rearrangements along each lineage. Our results allow a more reliable estimate of the mode and tempo of evolutionary chromosomal rearrangements, revealing a striking switch between the slowly evolving ceratomorphs and extremely rapidly evolving equids.

Key words

chromosomal evolution chromosome painting cladistics Equidae karyology Perissodactyla 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10577_2007_1201_MOESM1_ESM.doc (154 kb)
Supplementary Table S1 Matrix of human-based (HSA) and horse-based (ECA) chromosomal characters. EPR, EHE, EAS, EZE, EGR, EBU, CSI, DBI, TIN, TBA, TTE, TPI represent Przewalski’s horse, onager, donkey, mountain zebra, Grevy’s zebra, Burchell’s zebra, white rhinoceros, black rhinoceros, Malayan tapir, Baird’s tapir, lowland tapir, and mountain tapir respectively. Partial chromosomes/chromosome arms are marked by inverted commas. “Inv” indicates inversion (DOC 154 kb)
10577_2007_1201_Fig1_ESM.jpg (215 kb)
Supplementary Figure S2 Karyotype of Grevy’s zebra with human (HSA) and Malayan tapir (TIN) homologies. Human homologies that were not found in these experiments, but are inferred from previously published data are indicated by circles (JPEG 214 kb)


  1. Balmus G, Trifonov VA, Biltueva LS et al. (2007) Cross species painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype. Chromosome Res 15: 499–514.PubMedCrossRefGoogle Scholar
  2. Benirschke K, Brownhill LE, Beath MM (1962) Somatic chromosomes of the horse, the donkey and their hybrids, the mule and the hinny. J Reprod Fertil 4: 319.PubMedCrossRefGoogle Scholar
  3. Benirschke K, Malouf N, Low RJ, Heck H (1965) Chromosome complement differences between Equus caballus and Equus przewalskii, Poliakoff. Science 148: 382.PubMedCrossRefGoogle Scholar
  4. Benirschke K, Malouf N (1967) Chromosome studies of Equidae. Equus 1: 253–284.Google Scholar
  5. Bielec PE, Gallagher DS, Womack JE, Busbee DL (1998) Homologies between human and dolphin chromosomes detected by heterologous chromosome painting. Cytogenet Cell Genet 81: 18–26.PubMedCrossRefGoogle Scholar
  6. Biltueva LS, Yang F, Vorobieva NV, Graphodatsky AS (2004) Comparative map between the domestic pig and dog. Mamm Genome 15: 809–818.PubMedCrossRefGoogle Scholar
  7. Bowling AT, Ruvinsky A, eds (2000) The Genetics of the Horse. Wallingford, UK: CAB International.Google Scholar
  8. Bradley R, Wichman HA (1994) Rapidly evolving repetitive DNA in a conservative genome: a test of factors that affect chromosomal evolution. Chromosome Res 2: 354–360.PubMedCrossRefGoogle Scholar
  9. Bush GL, Case SM, Wilson AC, Patton JL (1977) Rapid speciation and chromosomal evolution in mammals. Proc Natl Acad Sci USA 74: 3942–3946.PubMedCrossRefGoogle Scholar
  10. Caetano AR, Shiue Y, Lyons LA et al. (1999) A comparative gene map of the horse (Equus caballus). Genome Res 9: 1239–1249.PubMedCrossRefGoogle Scholar
  11. Carbone L, Nergadze SG, Magnani E et al. (2006) Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 87: 777–782.PubMedCrossRefGoogle Scholar
  12. Chowdhary BP, Raudsepp T, Kata SR et al. (2003) The first-generation whole-genome radiation hybrid map in the horse identifies conserved segments in human and mouse genomes. Genome Res 13: 742–751.PubMedCrossRefGoogle Scholar
  13. Dobigny G, Ducroz JF, Robinson TJ, Volobouev V (2004) Cytogenetics and cladistics. Syst Biol 53: 470–484.PubMedCrossRefGoogle Scholar
  14. Dobigny G, Aniskin V, Granjon L, Cornette R, Volobouev V (2005) Recent radiation in West African Taterillus (Rodentia, Gerbillinae): the concerted role of chromosome and climatic changes. Heredity 95: 358–368.PubMedCrossRefGoogle Scholar
  15. Graphodatsky A, Radjabli S (1988) GTG- and C-banded chromosomes of horse and donkey. In: Baranov OK, ed. Chromosomes of Agricultural and Laboratory Mammals. Novosibirsk: “Nauka”.Google Scholar
  16. Graphodatsky AS, Yang F, O’Brien PC et al. (2000) A comparative chromosome map of the Arctic fox, red fox and dog defined by chromosome painting and high resolution G-banding. Chromosome Res 8: 253–263.PubMedCrossRefGoogle Scholar
  17. Guérin G, Bailey E, Bernoco D et al. (1999) Report of the International Equine Gene Mapping Workshop: male linkage map. Anim Genet 30: 341–354.PubMedCrossRefGoogle Scholar
  18. Guérin G, Bailey E, Bernoco D et al. (2003) The second generation of the International Equine Gene Mapping Workshop half-sibling linkage map. Anim Genet 34: 161–168.PubMedCrossRefGoogle Scholar
  19. Houck ML, Ryder OA, Vahala J, Kock RA, Oosterhuis JE (1994) Diploid chromosome number and chromosomal variation in the White rhinoceros (Ceratotherium simum). J Hered 85: 30–34.PubMedGoogle Scholar
  20. Houck ML, Ryder OA, Kumamoto AT, Benirschke K (1995) Cytogenetics of the Rhinocerotidae. Sonderdruck aus Verhandlumgsbericht des 37. Internationalen Symp. uber die Erkrankungen der Zootiere, Dresden, pp. 25–32.Google Scholar
  21. Houck ML, Kumamoto AT, Cabrera RM, Benirschke K (1998) Chromosomal rearrangements in a Somali wild ass pedigree, Equus africanus somaliensis (Perissodactyla, Equidae). Cytogenet Cell Genet 80: 117–122.PubMedCrossRefGoogle Scholar
  22. Houck ML, Kingswood SC, Kumamoto AT (2000) Comparative cytogenetics of tapirs, genus Tapirus (Perissodactyla, Tapiridae). Cytogenet Cell Genet 89: 110–115.PubMedCrossRefGoogle Scholar
  23. Itoh T, Watanabe T, Ihara N et al. (2005) A comprehensive radiation hybrid map of the bovine genome comprising 5593 loci. Genomics 85: 413–424.PubMedCrossRefGoogle Scholar
  24. Koehler U, Bigoni F, Wienberg J, Stanyon R (1995) Genomic reorganization in the concolor gibbon (Hylobates concolor) revealed by chromosome painting. Genomics 30: 287–292.PubMedCrossRefGoogle Scholar
  25. Lindsay EH, Opdyke ND, Johnson NM (1980) Pliocene dispersal of the horse Equus and late Cenozoic mammal dispersal events. Nature 287: 135–138.CrossRefGoogle Scholar
  26. Milenkovic D, Oustry-Vaiman A, Lear TL et al. (2002) Cytogenetic localization of 136 genes in the horse: comparative mapping with the human genome. Mamm Genome 13: 524–534.PubMedCrossRefGoogle Scholar
  27. Mueller S, Hollatz M, Wienberg J (2003) Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum Genet 113: 493–501.CrossRefGoogle Scholar
  28. Murphy WJ, Larkin DM, Everts-van der Wind A et al. (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309: 613–617.PubMedCrossRefGoogle Scholar
  29. Murphy WJ, Pringle TH, Tess A, Crider TA, Springer MS, Miller W (2007a) Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17: 413–421.PubMedCrossRefGoogle Scholar
  30. Murphy WJ, Davis B, David VA et al. (2007b) A 1.5-Mb-resolution radiation hybrid map of the cat genome and comparative analysis with the canine and human genomes. Genomics 89: 189–196.PubMedCrossRefGoogle Scholar
  31. Musilova P, Kubikova S, Zrnova E et al. (2007) Karyotypic relationships among Equus grevyi, Equus burchelli and domestic horse defined using horse chromosome arm-specific probes. Chromosome Res 15: 807–813.PubMedCrossRefGoogle Scholar
  32. Myka JL, Lear TL, Houck ML, Ryder OA, Bailey E (2003) Homologous fission event(s) implicated for chromosomal polymorphisms among five species in the genus Equus. Cytogenet Genome Res 102: 217–221.PubMedCrossRefGoogle Scholar
  33. Norman JE, Ashley MV (2000) Phylogenetics of Perissodactyla and tests of the molecular clock. J Mol Evol 50: 11–21.PubMedGoogle Scholar
  34. Oakenfull EA, Clegg JB (1998) Phylogenetic relationships within the genus Equus and the evolution of α and θ globin genes. J Mol Evol 47: 772–783.PubMedCrossRefGoogle Scholar
  35. Oakenfull EA, Lim HN, Ryder OA (2000) A survey of equid mitochondrial DNA: implications for the evolution, genetic diversity and conservation of equids. Conservation Genetics 1: 341–355.CrossRefGoogle Scholar
  36. O’Brien SJ, Menninger JC, Nash WG (2006) Equus hemionus onager (onager). In: O' Brien SJ, Menninger JC, Nash WG, eds. Atlas of Mammalian Chromosomes. New York: Wiley-Liss.Google Scholar
  37. Padro Manuel de Villena F, Sapienza C (2001) Female meiosis drives karyotypic evolution in mammals. Genetics 159: 1179–1189.Google Scholar
  38. Penedo MCT, Millon LV, Bernoco D et al. (2005) International equine gene mapping workshop report: a comprehensive linkage map constructed with data from new markers and by merging four mapping resources. Cytogenet Genome Res 111: 5–15.PubMedCrossRefGoogle Scholar
  39. Pitra C, Veits J (2000) Use of mitochondrial DNA sequences to test the Ceratomorpha (Perissodactyla: Mammalia) hypothesis. J Zool Syst Evol Res 38: 65–72.CrossRefGoogle Scholar
  40. Prothero DR, Schoch RM, eds (1989) The Evolution of Perissodactyls. New York: Oxford University Press.Google Scholar
  41. Raudsepp T, Chowdhary BP (1999) Construction of chromosome specific paints for meta and sub-metacentric autosomes and the sex chromosomes in the horse and their use to detect homologous chromosomal segments in the donkey. Chromosome Res 6: 103–114.CrossRefGoogle Scholar
  42. Raudsepp T, Frönicke L, Scherthan H, Gustavsson I, Chowdhary BP (1996) Zoo-FISH delineates conserved chromosomal segments in horse and man. Chromosome Res 4: 1–8.CrossRefGoogle Scholar
  43. Raudsepp T, Kijas J, Godard S et al. (1999) Comparison of horse chromosome 3 with donkey and human chromosomes by cross-species painting and heterologous FISH mapping. Mamm Genome 10: 211–282.CrossRefGoogle Scholar
  44. Raudsepp T, Christensen K, Chowdhary BP (2000) Cytogenetics of donkey chromosomes: nomenclature proposal based on GTG-banded chromosomes and depiction of NORs and telomeric sites. Chromosome Res 8: 659–670.PubMedCrossRefGoogle Scholar
  45. Raudsepp T, Mariat D, Guerin G, Chowdhary BP (2001) Comparative FISH mapping of 32 loci reveals new homologous regions between donkey and horse karyotypes. Cytogenet Cell Genet 94: 180–185.PubMedCrossRefGoogle Scholar
  46. Richard F, Messaoudi C, Lombard M, Dutrillaux B (2001) Chromosome homologies between man and mountain zebra (Equus zebra hartmannae) and description of a new ancestral synteny involving sequences homologous to human chromosomes 4 and 8. Cytogenet Cell Genet 93: 291–296.PubMedCrossRefGoogle Scholar
  47. Robinson TJ, Seiffert E (2004) Afrotherian origins and interrelationships: new views and future prospects. Curr Top Dev Biol 63: 37–60.PubMedCrossRefGoogle Scholar
  48. Robinson TJ, Trifonov V, Espie I, Harley EH (2005) Interspecific hybridisation in rhinoceroses: Confirmation of a Black × White rhinoceros hybrid by karyotype, fluorescence in situ hybridisation (FISH) and microsatellite analysis. Conservation Genetics 6: 141–145.CrossRefGoogle Scholar
  49. Ryder OA (1978) Chromosomal polymorphism in Equus hemionus. Cytogenet Cell Genet 21: 177–183.PubMedGoogle Scholar
  50. Ryder OA, Epel NC, Benirschke K (1978) Chromosome banding studies of the Equidae. Cytogenet Cell Genet 20: 323–350.Google Scholar
  51. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2: 971–972.PubMedCrossRefGoogle Scholar
  52. Scherthan H, Cremer T, Arnason U, Weier HU, Lima-de-Faria A, Froenicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat Genet 6: 342–347.PubMedCrossRefGoogle Scholar
  53. Swofford DL (1997) PAUP*: Phylogenetic analysis using parsimony, beta test version 4.0. Sunderland, MA: Sinauer.Google Scholar
  54. Telenius H, Pelmear AH, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4: 257–263.PubMedCrossRefGoogle Scholar
  55. Tougard C, Delefosse T, Hänni C, Montgelard C (2001) Phylogenetic relationships of the five extant rhinoceros species (Rhinocerotidae, Perissodactyla) based on mitochondrial cytochrome b and 12S rRNA genes. Mol Phylogenet Evol 19: 34–44.PubMedCrossRefGoogle Scholar
  56. Trifonov V, Yang F, Ferguson-Smith MA, Robinson TJ (2003) Cross-species chromosome painting in the Perissodactyla: delimitation of homologous regions in Burchell’s Zebra (Equus burchellii) and the White (Ceratotherium simum) and Black Rhinoceros (Diceros bicornis). Cytogenet Genome Res 103: 104–110.PubMedCrossRefGoogle Scholar
  57. Trommershausen-Bowling A, Millon L (1988) Centric fission in the karyotype of mother–daughter pair of donkeys (Equus asinus). Cytogenet Cell Genet 47: 152–154.PubMedGoogle Scholar
  58. Wang W, Lan H (2000) Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny. Mol Biol Evol 17: 1326–1333.PubMedGoogle Scholar
  59. Whitehouse DB, Evans EP, Putt W, George AM (1984) Karyotypes of the East African common zebra, Equus burchelli: centric fission in a pedigree. Cytogenet Cell Genet 38: 171–175.Google Scholar
  60. Wood HE (1937) Perissodactyl suborders. J Mammal 18: 106.Google Scholar
  61. Wurster DH, Benirschke K (1968) The chromosomes of the Great Indian rhinoceros. Experimentia 24: 511.CrossRefGoogle Scholar
  62. Xu X, Janke A, Arnason U (1996) The complete mitochondrial DNA sequence of the greater Indian rhinoceros, Rhinoceros unicornis, and the phylogenetic relationship among Carnivora, Perissodactyla, and Artiodactyla (plus Cetacea). Mol Biol Evol 13: 1167–1173.PubMedGoogle Scholar
  63. Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103: 642–652.PubMedCrossRefGoogle Scholar
  64. Yang F, O’Brien PC, Milne BS et al. (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62: 189–202.PubMedCrossRefGoogle Scholar
  65. Yang F, Graphodatsky AS, O’Brien PC et al. (2000) Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res 8: 393–404.PubMedCrossRefGoogle Scholar
  66. Yang F, Fu B, O’Brien PC, Robinson TJ, Ryder OA, Ferguson-Smith MA (2003) Karyotypic relationships of horses and zebras: results of cross-species chromosome painting. Cytogenet Genome Res 102: 235–243.PubMedCrossRefGoogle Scholar
  67. Yang F, Fu B, O’Brien PC, Nie W, Ryder OA, Ferguson-Smith MA (2004) Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules. Chromosome Res 12: 65–76.PubMedCrossRefGoogle Scholar
  68. Yang F, Graphodatsky AS, Li T et al. (2006) Comparative genome maps of the pangolin, hedgehog, sloth, anteater and human revealed by cross-species chromosome painting: further insight into the ancestral karyotype and genome evolution of eutherian mammals. Chromosome Res 14: 283–286.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Vladimir A. Trifonov
    • 1
    • 2
  • Roscoe Stanyon
    • 3
  • Anastasia I. Nesterenko
    • 1
  • Beiyuan Fu
    • 2
  • Polina L. Perelman
    • 1
    • 4
  • Patricia C M O’Brien
    • 2
  • Gary Stone
    • 4
  • Nadezhda V. Rubtsova
    • 1
  • Marlys L. Houck
    • 5
  • Terence J. Robinson
    • 6
  • Malcolm A. Ferguson-Smith
    • 2
  • Gauthier Dobigny
    • 7
  • Alexander S. Graphodatsky
    • 1
  • Fengtang Yang
    • 8
  1. 1.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussia
  2. 2.Department of Veterinary MedicineCambridge Resource Centre for Comparative GenomicsCambridgeUK
  3. 3.Department of Animal Biology and GeneticsUniversity of FlorenceFlorenceItaly
  4. 4.National Cancer InstituteFrederickUSA
  5. 5.Conservation and Research for Endangered SpeciesZoological Society of San DiegoSan DiegoUSA
  6. 6.Evolutionary Genomics Group, Department of Botany and ZoologyUniversity of StellenboschMatielandSouth Africa
  7. 7.Institut de Recherche pour le Développement, Centre de Biologie et Gestion des PopulationsCampus International de Baillarguet, CS30016Montferrier-sur-LezFrance
  8. 8.The Wellcome Trust Sanger InstituteWellcome Trust Genome CampusCambridgeUK

Personalised recommendations