Advertisement

Chromosome Research

, Volume 16, Issue 2, pp 233–241 | Cite as

Possible autosomal origin of macro B chromosomes in two grasshopper species

  • Vilma Loreto
  • Josefa Cabrero
  • Maria Dolores López-León
  • Juan Pedro M. Camacho
  • Maria José Souza
Article

Abstract

The acrocentric macro B chromosomes of Rhammatocerus brasiliensis (Acrididae, Gomphocerinae) and Xyleus discoideus angulatus (Romaleidae, Romaleinae) are highly similar to the X chromosome in each species in terms of morphology, size, and pycnosis. However, the results of FISH experiments using 45S and 5S rDNA probes suggest that in both species the B chromosomes are most likely of autosomal origin. In R. brasiliensis, the B chromosome presented 5S rDNA but not 45S rDNA, in resemblance to the L2, L3, M5 and S11 autosomes, but the X chromosome lacks both rDNA families. In X. d. angulatus, 45S rDNAs is absent from the B chromosome, whereas the X chromosome contains one of the two 45S rDNA clusters in the genome. The occurrence of B chromosomes in all nine R. brasiliensis populations analyzed indicates that they are widely distributed in Northeastern Brazil, and the small amount of interpopulation variation found for B chromosome prevalence suggests the existence of high gene flow, presumably due to the abundance of this grasshopper species on several types of vegetation and its relatively high flight capability.

Key words

B chromosome cytogenetics evolution FISH grasshopper Rhammatocerus Xyleus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bidau CJ (1984) Meiotic pairing and chiasma localization in Scyllina signatipennis (Gomphocerinae, Acrididae). Caryologia 37: 87–103.Google Scholar
  2. Bidau CJ, Rosato M, Martí DA (2004) FISH detection of ribosomal cistrons and assortment-distortion for X and B chromosomes in Dichroplus pratensis (Acrididae). Cytogenet Genome Res 106: 295–301.PubMedCrossRefGoogle Scholar
  3. Cabrero J, Camacho JPM (1987) Population cytogenetics of Chorthippus vagans II. Reduced meiotic transmission but increased fertilization by males possessing a supernumerary chromosome. Genome 29: 285–291.Google Scholar
  4. Cabrero J, López-León MD, Bakkali M, Camacho JPM (1999) Common origin of B chromosome variants in the grasshopper Eyprepocnemis plorans. Heredity 83: 435–439.PubMedCrossRefGoogle Scholar
  5. Cabrero J, Perfectti F, Gómez R, Camacho JPM, López-León MD (2003a) Population variation in the A chromosome distribution of satellite DNA and ribosomal DNA in the grasshopper Eyprepocnemis plorans. Chromosome Res 11: 375–381.PubMedCrossRefGoogle Scholar
  6. Cabrero J, Bakkali M, Bugrov A, et al. (2003b) Multiregional origin of B chromosomes in the grasshopper Eyprepocnemis plorans. Chromosoma 112: 207–211.PubMedCrossRefGoogle Scholar
  7. Camacho JPM (2005) B chromosomes. In: Gregory TR, ed. The Evolution of the Genome, San Diego: Elsevier, pp. 223–286.Google Scholar
  8. Camacho JPM, Sharbel TE, Beukeboom LW (2000) B-chromosome evolution. Philos Trans R Soc Lond B 355: 163–178.CrossRefGoogle Scholar
  9. Carbonell CS (1995) Revision of the tribe Scyllinini, Nov. (Acrididae: Gomphocerinae), with descriptions of new genera and species. Trans Am Entomol Soc 121: 87–152.Google Scholar
  10. Castro AJ, Perfectti F, Pardo MC, Cabrero J, López-León MD, Camacho JPM (1998) No harmful effects of a selfish B chromosome on several morphological and physiological traits in Locusta migratoria (Orthoptera, Acrididae). Heredity 80: 753–759.CrossRefGoogle Scholar
  11. Colombo PC, Remis MI (1997) On the origin of B-chromosomes: neo XY systems and X-like supernumeraries in Orthoptera. Caryologia 50: 151–162.Google Scholar
  12. Gallagher A, Hewitt G, Gibson I (1973) Differential giemsa staining of heterochromatic B-chromosomes in Myrmeleotettix maculatus (Thunb.) (Orthoptera: Acrididae). Chromosoma 40: 167–172.PubMedCrossRefGoogle Scholar
  13. Gosálvez J, López-Fernández C (1981) Extra heterochromatin in natural populations of Gomphocerus sibiricus (Orthoptera: Acrididae). Genetica 56: 197–204.CrossRefGoogle Scholar
  14. Hewitt GM (1973) The integration of supernumerary chromosomes into the orthopteran genome. Cold Spring Harbor Symp Quant Biol 38: 183–194.Google Scholar
  15. Hewitt GM (1979) Orthoptera. Animal cytogenetics 3. Insecta 1. Berlin-Stuttgart: Borntraeger.Google Scholar
  16. John B, Hewitt GM (1965) The B-chromosome system of Myrmeleotettix maculatus (Thunb.). I. The mechanics. Chromosoma 16: 548–578.PubMedCrossRefGoogle Scholar
  17. Jones RN, Puertas MJ (1993) The B chromosomes of rye (Secale cereale L.). In: Dhir KK, Sareen TS, eds. Frontiers in Plant Science Research, Delhi: Bhagwati Enterprises, pp. 81–112.Google Scholar
  18. Jones RN, Rees H (1982) B chromosomes. New York: Academic Press.Google Scholar
  19. López-Fernández C, Gosálvez J (1983) The chromosome system in three species of the genus Arcyptera II. Unstable B-chromosomes in A. fusca (Pall.). Genetica 62: 41–46.CrossRefGoogle Scholar
  20. López-León MD, Neves N, Schwarzacher T, Heslop-Harrison JS, Hewitt GM, Camacho JPM (1994) Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosome Res 2: 87–92.PubMedCrossRefGoogle Scholar
  21. López-León MD, Cabrero J, Camacho JPM (1995) Changes in DNA methylation during development in the B chromosome NOR of the grasshopper Eyprepocnemis plorans. Heredity 74: 296–302.Google Scholar
  22. McAllister BF, Werren JH (1997) Hybrid origin of a B chromosome (PSR) in the parasitic wasp Nasonia vitripennis. Chromosoma 106: 243–253.PubMedCrossRefGoogle Scholar
  23. Remis MI (1989) Effects of supernumerary heterochromatin on chiasma conditions in two species of Acrididae (Orthoptera). Genetica 79: 53–61.CrossRefGoogle Scholar
  24. Santos JL, del Cerro AL, Fernández A, Díez M (1993) Meiotic behaviour of B chromosomes in the grasshopper Omocestus burri: a case of drive in females. Hereditas 118: 139–143.CrossRefGoogle Scholar
  25. Schartl M, Nanda I, Schlupp I, et al. (1995) Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish. Nature 373: 68–71.CrossRefGoogle Scholar
  26. Schweizer D, Mendelak M, White MJD, Contreras N (1983) Cytogenetics of the parthenogenetic grasshopper Warramaba virgo and its bisexual relatives. X. Pattern of fluorescent banding. Chromosoma 88: 227–236.CrossRefGoogle Scholar
  27. Souza MJ, Kido LMH (1995) Variability of constitutive heterochromatin in karyotypes of representatives of the family Romaleidae (Orthoptera). Rev Brasil Genet 18: 517–520.Google Scholar
  28. Souza MJ, Rufas JS, Orelana J (1998) Constitutive heterochromatin, NOR location and FISH in the grasshopper Xyleus angulatus (Romaleidae). Caryologia 51: 73–80.Google Scholar
  29. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304–306.PubMedCrossRefGoogle Scholar
  30. Vilardi JC (1986a) Isocromosomas B e irregularidades meióticas en dos especies de Euplectrotettix (Orthoptera: Acrididae). Mendeliana 7: 125–137.Google Scholar
  31. Vilardi JC (1986b) Parallel polymorphism for interstitial C-bands and B-chromosomes in Zoniopoda tarsata (Orthoptera-Romaleidae). Caryologia 39: 365–380.Google Scholar
  32. Viseras E, Camacho JPM (1985) The B chromosome system of Omocestus bolivari: changes in B-behaviour in M4-polysomic B-males. Heredity 54: 385–390.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Vilma Loreto
    • 1
    • 2
  • Josefa Cabrero
    • 3
  • Maria Dolores López-León
    • 3
  • Juan Pedro M. Camacho
    • 3
  • Maria José Souza
    • 2
  1. 1.Unidade Acadêmica de GaranhunsUniversidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Departamento de Genética, CCBUniversidade Federal de PernambucoRecifeBrazil
  3. 3.Departamento de Genética, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations