Chromosome Research

, Volume 15, Issue 7, pp 891–897 | Cite as

Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). II. The genome homology of two mole voles (genus Ellobius), the field vole and golden hamster revealed by comparative chromosome painting

  • Svetlana A. Romanenko
  • Natalia A. Sitnikova
  • Natalya A. Serdukova
  • Polina L. Perelman
  • Nadezhda V. Rubtsova
  • Irina Yu. Bakloushinskaya
  • Elena A. Lyapunova
  • Walter Just
  • Malcolm A. Ferguson-Smith
  • Fengtang Yang
  • Alexander S. Graphodatsky
Article

Abstract

Using cross-species chromosome painting, we have carried out a comprehensive comparison of the karyotypes of two Ellobius species with unusual sex determination systems: the Transcaucasian mole vole, Ellobius lutescens (2n = 17, X in both sexes), and the northern mole vole, Ellobius talpinus (2n = 54, XX in both sexes). Both Ellobius species have highly rearranged karyotypes. The chromosomal paints from the field vole (Microtus agrestis) detected, in total, 34 and 32 homologous autosomal regions in E. lutescens and E. talpinus karyotypes, respectively. No difference in hybridization pattern of the X paint (as well as Y paint) probes on male and female chromosomes was discovered. The set of golden hamster (Mesocricetus auratus) chromosomal painting probes revealed 44 and 43 homologous autosomal regions in E. lutescens and E. talpinus karyotypes, respectively. A comparative chromosome map was established based on the results of cross-species chromosome painting and a hypothetical ancestral Ellobius karyotype was reconstructed. A considerable number of rearrangements were detected; 31 and 7 fusion/fission rearrangements differentiated the karyotypes of E. lutescens and E. talpinus from the ancestral Ellobius karyotype. It seems that inversions have played a minor role in the genome evolution of these Ellobius species.

Key words

chromosome painting comparative cytogenetics Ellobius lutescens Ellobius talpinus 

References

  1. Borisov YM, Lyapunova EA, Vorontsov NN (1991) Karyotype evolution in the genus Ellobius (Microtinae, Rodentia). Genetika 27: 523–532 [in Russian].PubMedGoogle Scholar
  2. Corbet GB (1978) The Mammals of the Palaearctic Region: A Taxonomic Review. London and Ithaca: British Museum (Natural History), Cornell University Press.Google Scholar
  3. Corbet GB (1984) The Mammals of the Palaearctic Region: A Taxonomic Review. Supplement. London and Ithaca: British Museum (Natural History), Cornell University Press.Google Scholar
  4. Fredga K, Lyapunova EA (1991) Fertile males with two X chromosomes in Ellobius tancrei (Rodentia, Mammalia). Hereditas 11: 86–97.Google Scholar
  5. Graphodatsky AS, Yang F, O’Brien PC et al. (2000) A comparative chromosome map of the Arctic fox, red fox and dog defined by chromosome painting and high resolution G-banding. Chromosome Res 8: 253–263.PubMedCrossRefGoogle Scholar
  6. Just W, Rau W, Vogel W et al. (1995) Absence of Sry in species of the vole Ellobius. Nature Genet 11: 117–118.PubMedCrossRefGoogle Scholar
  7. Just W, Baumstark A, Hameister H et al. (2002) The sex determination in Ellobius lutescens remains bizarre. Cytogenet Genome Res 96: 146–153.PubMedCrossRefGoogle Scholar
  8. Li T, Wang J, Su W, Yang F (2006) Chromosomal mechanisms underlying the karyotype evolution of the oriental voles (Muridae, Eothenomys). Cytogenet Genome Res 114: 50–55.PubMedCrossRefGoogle Scholar
  9. Lyapunova EA, Vorontsov NN, Korobitsyna et al. (1980) A robertsonian fan in Ellobius talpinus. Genetica 53/54: 239–247.Google Scholar
  10. Lyapunova EA, Baklushinskaya IY, Kolomiets OL, Mazurova TF (1990) Analysis of fertility of hybrids of multi-chromosomal forms in mole-voles of the super-species Ellobius tancrei differing in a single pair of Robertsonian metacentrics. Doklady Akademii Nauk SSSR 310: 721–723 [in Russian].Google Scholar
  11. Matthey R (1953) La formule chromosomique et le probleme de la determination sexuelle chez Ellobius lutescens Thomas (Rodentia-Muridae-Microtinae). Arch Klaus-Stift Vererb Forsch 28: 65–73.Google Scholar
  12. Musser GG, Carleton MD (2005) Subfamily Arvicolinae. In: Wilson DE, Reeder DM, eds. Mammal Species of the World: A Taxonomic and Geographic Reference. Baltimore: Johns Hopkins University Press, pp 956–1039.Google Scholar
  13. Pavlinov IY, Rossolimo OL (1987) Systematics of the Mammals of the USSR. Moscow: Moscow University Press [in Russian].Google Scholar
  14. Perelman PL, Graphodatsky AS, Baklushinskaya IY, Lyapunova EA (2006) Selected karyotypes. In: O'Brien SJ, Nash WG, Menninger JC, eds. ATLAS of Mammalian Karyotypes. John Wiley and Sons Publishers, p 279.Google Scholar
  15. Romanenko SA, Perelman PL, Serdukova NA et al. (2006) Reciprocal chromosome painting between three laboratory rodent species. Mamm Genome 17: 1183–1192.PubMedCrossRefGoogle Scholar
  16. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2: 971–972.PubMedCrossRefGoogle Scholar
  17. Sitnikova NA, Romanenko SA, O’Brien et al. (2007) Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting. Chromosome Res 15: 447–456.PubMedCrossRefGoogle Scholar
  18. Stanyon R, Yang F, Morescalchi AM, Galleni L (2004) Chromosome painting in the long-tailed field mouse provides insights into the ancestral murid karyotype. Cytogenet Genome Res 105: 406–411.PubMedCrossRefGoogle Scholar
  19. Vogel W, Jainta S, Rau W et al. (1998) Sex determination in Ellobius lutescens: the story of an enigma. Cytogenet Cell Genet 80: 214–221.PubMedCrossRefGoogle Scholar
  20. Vorontsov NN, Radjably SI (1967) Chromosomal complements and cytogenetical differentiation of two forms of Ellobius talpinus Pall. subspecies. Tsitologya 9: 848–852 [in Russian].Google Scholar
  21. Vorontsov NN, Yakimenko LV (1984) The morphometric analysis of the skull in mole vole (Rodentia, Ellobius). Zool J 63: 1859–1871 [in Russian].Google Scholar
  22. Yang F,O’Brien PC, Milne BS et al. (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62: 189–202.PubMedCrossRefGoogle Scholar
  23. Yang E, O’Brien PCM, Ferguson-Smith MA (2000) Comparative chromosome map of the laboratory mouse and Chinese hamster defined by reciprocal chromosome painting. Chromosome Res 8: 219–227.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Svetlana A. Romanenko
    • 1
  • Natalia A. Sitnikova
    • 1
  • Natalya A. Serdukova
    • 1
  • Polina L. Perelman
    • 1
  • Nadezhda V. Rubtsova
    • 1
  • Irina Yu. Bakloushinskaya
    • 2
  • Elena A. Lyapunova
    • 2
  • Walter Just
    • 3
  • Malcolm A. Ferguson-Smith
    • 4
  • Fengtang Yang
    • 5
  • Alexander S. Graphodatsky
    • 1
  1. 1.Institute of Cytology and Genetics, SB RASNovosibirskRussia
  2. 2.Koltzov Institute of Developmental Biology RASMoscowRussia
  3. 3.Institute of Human GeneticsUniversity of UlmUlmGermany
  4. 4.Cambridge Resource Centre for Comparative Genomics, Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
  5. 5.The Wellcome Trust Sanger InstituteWellcome Trust Genome CampusCambridgeUK

Personalised recommendations