Chromosome Research

, Volume 15, Issue 5, pp 551–563 | Cite as

The multiple roles of the Mre11 complex for meiotic recombination

Article

Abstract

During the first meiotic prophase, numerous DNA double-strand breaks (DSB) are formed in the genome in order to initiate recombination between homologous chromosomes. The conserved Mre11 complex, formed of Mre11, Rad50 and Nbs1 (Xrs2 in Saccharomyces cerevisiae) proteins, plays a crucial role in mitotic cells for sensing and repairing DSB. In meiosis the Mre11 complex is also required for meiotic recombination. Depending on the organisms, the Mre11 complex is required for the formation of the DSB catalysed by the transesterase Spo11 protein. It then plays a unique function in removing covalently attached Spo11 from the 5′ extremity of the breaks through its nuclease activity, to allow further break resection. Finally, the Mre11 complex also plays a role during meiosis in bridging DNA molecules together and in sensing Spo11 DSB and activating the DNA damage checkpoint. In this article the different biochemical functions of the Mre11 complex required during meiosis are reviewed, as well as the consequences of Mre11 complex inactivation for meiosis in several organisms. Finally, I describe the meiotic phenotypes of several animal models that have been developed to model hypomorphic mutations of the Mre11 complex, involved in humans in some genetic instability disorders.

Key words

DNA damage checkpoint double-strand breaks meiosis Mre11 Saccharomyces cerevisiae yeast 

References

  1. Ajimura M, Leem SH, Ogawa H (1993) Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133: 51–66.PubMedGoogle Scholar
  2. Alani E, Padmore R, Kleckner N (1990) Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61: 419–436.PubMedCrossRefGoogle Scholar
  3. Arora C, Kee K, Maleki S, Keeney S (2004) Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Mol Cell 13: 549–559.PubMedCrossRefGoogle Scholar
  4. Bender CF, Sikes ML, Sullivan R et al. (2002) Cancer predisposition and hematopoietic failure in Rad50(S/S) mice. Genes Dev 16: 2237–2251.PubMedCrossRefGoogle Scholar
  5. Bhaskara V, Dupre A, Lengsfeld B et al. (2007) Rad50 adenylate kinase activity regulates DNA tethering by Mre11/Rad50 complexes. Mol Cell 25: 647–661.PubMedCrossRefGoogle Scholar
  6. Blat Y, Protacio RU, Hunter N, Kleckner N (2002) Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111: 791–802.PubMedCrossRefGoogle Scholar
  7. Bleuyard JY, Gallego ME, White CI (2004) Meiotic defects in the Arabidopsis rad50 mutant point to conservation of the MRX complex function in early stages of meiotic recombination. Chromosoma 113: 197–203.PubMedCrossRefGoogle Scholar
  8. Borde V, Lin W, Novikov E, Petrini JH, Lichten M, Nicolas A (2004) Association of Mre11p with double-strand break sites during yeast meiosis. Mol Cell 13: 389–401.PubMedCrossRefGoogle Scholar
  9. Bressan DA, Baxter BK, Petrini JH (1999) The Mre11–Rad50–Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 19: 7681–7687.PubMedGoogle Scholar
  10. Bundock P, Hooykaas P (2002) Severe developmental defects, hypersensitivity to DNA-damaging agents, and lengthened telomeres in Arabidopsis MRE11 mutants. Plant Cell 14: 2451–2462.PubMedCrossRefGoogle Scholar
  11. Carney JP, Maser RS, Olivares H et al. (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93: 477–486.PubMedCrossRefGoogle Scholar
  12. Cartagena-Lirola H, Guerini I, Viscardi V, Lucchini G, Longhese MP (2006) Budding yeast Sae2 is an in vivo target of the Mec1 and Tel1 checkpoint kinases during meiosis. Cell Cycle 5: 1549–1559.PubMedGoogle Scholar
  13. Cherry SM, Adelman CA, Theunissen JW, Hassold TJ, Hunt PA, Petrini JH (2007) The Mre11 complex influences DNA repair, synapsis, and crossing over in murine meiosis. Curr Biol 17: 373–378.PubMedCrossRefGoogle Scholar
  14. Chin GM, Villeneuve, AM (2001) C. elegans mre-11 is required for meiotic recombination and DNA repair but is dispensable for the meiotic G(2) DNA damage checkpoint. Genes Dev 15: 522–534.PubMedCrossRefGoogle Scholar
  15. Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286: 1162–1166.PubMedCrossRefGoogle Scholar
  16. D’Amours D, Jackson SP (2001) The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev 15: 2238–2249.PubMedCrossRefGoogle Scholar
  17. D’Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 3: 317–327.PubMedCrossRefGoogle Scholar
  18. de Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R, Wyman C (2001) Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8: 1129–1135.PubMedCrossRefGoogle Scholar
  19. Debrauwere H, Loeillet S, Lin W, Lopes J, Nicolas A (2001) Links between replication and recombination in Saccharomyces cerevisiae: a hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc Natl Acad Sci USA 98: 8263–8269.PubMedCrossRefGoogle Scholar
  20. Deng C, Brown JA, You D, Brown JM (2005) Multiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiae. Genetics 170: 591–600.PubMedCrossRefGoogle Scholar
  21. Desai-Mehta A, Cerosaletti KM, Concannon P (2001) Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol Cell Biol 21: 2184–2191.PubMedCrossRefGoogle Scholar
  22. Di Giacomo M, Barchi M, Baudat F, Edelmann W, Keeney S, Jasin M (2005) Distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants. Proc Natl Acad Sci USA 102: 737–742.PubMedCrossRefGoogle Scholar
  23. Difilippantonio S, Celeste A, Fernandez-Capetillo O et al. (2005) Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 7: 675–685.PubMedCrossRefGoogle Scholar
  24. Fernet M, Gribaa M, Salih MA, Seidahmed MZ, Hall J, Koenig M (2005) Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder. Hum Mol Genet 14: 307–318.PubMedCrossRefGoogle Scholar
  25. Furuse M, Nagase Y, Tsubouchi H, Murakami-Murofushi K, Shibata T, Ohta K (1998) Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J 17: 6412–6425.PubMedCrossRefGoogle Scholar
  26. Gallego ME, Jeanneau M, Granier F, Bouchez D, Bechtold N, White CI (2001) Disruption of the Arabidopsis RAD50 gene leads to plant sterility and MMS sensitivity. Plant J 25: 31–41.PubMedCrossRefGoogle Scholar
  27. Gerecke EE, Zolan ME (2000) An mre11 mutant of Coprinus cinereus has defects in meiotic chromosome pairing, condensation and synapsis. Genetics 154: 1125–1139.PubMedGoogle Scholar
  28. Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. Embo J 20: 589–600.PubMedCrossRefGoogle Scholar
  29. Hopfner KP, Craig L, Moncalian G et al. (2002) The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418: 562–566.PubMedCrossRefGoogle Scholar
  30. Hopfner KP, Karcher A, Shin DS et al. (2000) Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101: 789–800.PubMedCrossRefGoogle Scholar
  31. Ivanov EL, Korolev VG, Fabre F (1992) XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132: 651–664.PubMedGoogle Scholar
  32. Johzuka K, Ogawa H (1995) Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139: 1521–1532.PubMedGoogle Scholar
  33. Kang J, Bronson RT, Xu Y (2002) Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. Embo J 21: 1447–1455.PubMedCrossRefGoogle Scholar
  34. Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52: 1–53.PubMedCrossRefGoogle Scholar
  35. Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88: 375–384.PubMedCrossRefGoogle Scholar
  36. Kobayashi J, Antoccia A, Tauchi H, Matsuura S, Komatsu K (2004) NBS1 and its functional role in the DNA damage response. DNA Repair (Amst) 3: 855–861.CrossRefGoogle Scholar
  37. Kobayashi J, Tauchi H, Sakamoto S et al. (2002) NBS1 localizes to gamma-H2AX foci through interaction with the FHA/BRCT domain. Curr Biol 12: 1846–1851.PubMedCrossRefGoogle Scholar
  38. Krogh BO, Llorente B, Lam A, Symington LS (2005) Mutations in Mre11 phosphoesterase motif I that impair Saccharomyces cerevisiae Mre11–Rad50–Xrs2 complex stability in addition to nuclease activity. Genetics 171: 1561–1570.PubMedCrossRefGoogle Scholar
  39. Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304: 93–96.PubMedCrossRefGoogle Scholar
  40. Lewis LK, Storici F, Van Komen S, Calero S, Sung P, Resnick MA (2004) Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells. Genetics 166: 1701–1713.PubMedCrossRefGoogle Scholar
  41. Li S, Ting NS, Zheng L, et al. (2000) Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406: 210–215.PubMedCrossRefGoogle Scholar
  42. Llorente B, Symington LS (2004) The Mre11 nuclease is not required for 5′ to 3′ resection at multiple HO-induced double-strand breaks. Mol Cell Biol 24: 9682–9694.PubMedCrossRefGoogle Scholar
  43. Lobachev KS, Gordenin DA, Resnick MA (2002) The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108: 183–193.PubMedCrossRefGoogle Scholar
  44. Malavazi I, Lima JF, von Zeska Kress Fagundes et al. (2005) The Aspergillus nidulans sldI(RAD50) gene interacts with bimE(APC1), a homologue of an anaphase-promoting complex subunit. Mol Microbiol 57: 222–237.PubMedCrossRefGoogle Scholar
  45. McKee AH, Kleckner N (1997) A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146: 797–816.PubMedGoogle Scholar
  46. Merino ST, Cummings WJ, Acharya SN, Zolan ME (2000) Replication-dependent early meiotic requirement for Spo11 and Rad50. Proc Natl Acad Sci USA 97: 10477–10482.PubMedCrossRefGoogle Scholar
  47. Morales M, Theunissen JW, Kim CF, Kitagawa R, Kastan MB, Petrini JH (2005) The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev 19: 3043–3054.PubMedCrossRefGoogle Scholar
  48. Moreau S, Ferguson JR, Symington LS (1999) The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol Cell Biol 19: 556–566.PubMedGoogle Scholar
  49. Moreau S, Morgan EA, Symington LS (2001) Overlapping functions of the Saccharomyces cerevisiae Mre11, Exo1 and Rad27 nucleases in DNA metabolism. Genetics 159: 1423–1433.PubMedGoogle Scholar
  50. Moreno-Herrero F, de Jager M, Dekker NH, Kanaar R, Wyman C, Dekker C (2005) Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature 437: 440–443.PubMedCrossRefGoogle Scholar
  51. Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4: 511–518.PubMedCrossRefGoogle Scholar
  52. Nairz K, Klein F (1997) mre11S–a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev 11: 2272–2290.PubMedGoogle Scholar
  53. Nakada D, Matsumoto K, Sugimoto K (2003) ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev 17: 1957–1962.PubMedCrossRefGoogle Scholar
  54. Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436: 1053–1057.PubMedCrossRefGoogle Scholar
  55. Paull TT, Gellert M (1998) The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1: 969–979.PubMedCrossRefGoogle Scholar
  56. Paull TT, Gellert M (1999) Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13: 1276–1288.PubMedGoogle Scholar
  57. Prinz S, Amon A, Klein F (1997) Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146: 781–795.PubMedGoogle Scholar
  58. Puizina J, Siroky J, Mokros P, Schweizer D, Riha K (2004) Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. Plant Cell 16: 1968–1978.PubMedCrossRefGoogle Scholar
  59. Ramesh MA, Zolan ME (1995) Chromosome dynamics in rad12 mutants of Coprinus cinereus. Chromosoma 104: 189–202.PubMedGoogle Scholar
  60. Rattray AJ, McGill CB, Shafer BK, Strathern JN (2001) Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics 158: 109–122.PubMedGoogle Scholar
  61. Semighini CP, von Zeska Kress Fagundes MR, Ferreira JC et al. (2003) Different roles of the Mre11 complex in the DNA damage response in Aspergillus nidulans. Mol Microbiol 48: 1693–1709.PubMedCrossRefGoogle Scholar
  62. Shima H, Suzuki M, Shinohara M (2005) Isolation and characterization of novel xrs2 mutations in Saccharomyces cerevisiae. Genetics 170: 71–85.PubMedCrossRefGoogle Scholar
  63. Stewart GS, Maser RS, Stankovic T et al. (1999) The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99: 577–587.PubMedCrossRefGoogle Scholar
  64. Stracker TH, Theunissen JW, Morales M, Petrini JH (2004) The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair (Amst) 3: 845–854.CrossRefGoogle Scholar
  65. Takata H, Tanaka Y, Matsuura A (2005) Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae. Mol Cell 17: 573–583.PubMedCrossRefGoogle Scholar
  66. Tauchi H, Kobayashi J, Morishima K et al. (2001) The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50-hMRE11-NBS1 complex DNA repair activity. J Biol Chem 276: 12–15.PubMedCrossRefGoogle Scholar
  67. Theunissen JW, Kaplan MI, Hunt PA et al. (2003) Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol Cell 12: 1511–1523.PubMedCrossRefGoogle Scholar
  68. Trujillo KM, Roh DH, Chen L, Van Komen S, Tomkinson A, Sung P (2003) Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends. J Biol Chem 278: 48957–48964.PubMedCrossRefGoogle Scholar
  69. Tsubouchi H, Ogawa H (1998) A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol Cell Biol 18: 260–268.PubMedGoogle Scholar
  70. Tsubouchi H, Ogawa H (2000) Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol Biol Cell 11: 2221–2233.PubMedGoogle Scholar
  71. Tsukamoto Y, Mitsuoka C, Terasawa M, Ogawa H, Ogawa T (2005) Xrs2p regulates Mre11p translocation to the nucleus and plays a role in telomere elongation and meiotic recombination. Mol Biol Cell 16: 597–608.PubMedCrossRefGoogle Scholar
  72. Usui T, Ogawa H, Petrini JH (2001) A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell 7: 1255–1266.PubMedCrossRefGoogle Scholar
  73. Usui T, Ohta T, Oshiumi H, Tomizawa J, Ogawa H, Ogawa T (1998) Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95: 705–716.PubMedCrossRefGoogle Scholar
  74. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. Embo J 22: 5612–5621.PubMedCrossRefGoogle Scholar
  75. Williams BR, Mirzoeva OK, Morgan WF, Lin J, Dunnick W, Petrini JH (2002) A murine model of Nijmegen breakage syndrome. Curr Biol 12: 648–653.PubMedCrossRefGoogle Scholar
  76. Wiltzius JJ, Hohl M, Fleming JC, Petrini JH (2005) The Rad50 hook domain is a critical determinant of Mre11 complex functions. Nat Struct Mol Biol 12: 403–407.PubMedCrossRefGoogle Scholar
  77. Xu L, Weiner BM, Kleckner N (1997) Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev 11: 106–118.PubMedCrossRefGoogle Scholar
  78. Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D (1996) Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10: 2411–2422.PubMedCrossRefGoogle Scholar
  79. You Z, Chahwan C, Bailis J, Hunter T, Russell P (2005) ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 25: 5363–5379.PubMedCrossRefGoogle Scholar
  80. Young JA, Hyppa RW, Smith GR (2004) Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 167: 593–605.PubMedCrossRefGoogle Scholar
  81. Young JA, Schreckhise RW, Steiner WW, Smith GR (2002) Meiotic recombination remote from prominent DNA break sites in S. pombe. Mol Cell 9: 253–263.PubMedCrossRefGoogle Scholar
  82. Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33: 603–754.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Institut Curie, Recombinaison et Instabilité GénétiqueCentre de Recherche, UMR7147 CNRS-Institut Curie-Université P. et M. CurieParis Cedex 05France

Personalised recommendations