Chromosome Research

, 15:447 | Cite as

Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting

  • Natalia A. Sitnikova
  • Svetlana A. Romanenko
  • Patricia C. M. O’Brien
  • Polina L. Perelman
  • Beiyuan Fu
  • Nadezhda V. Rubtsova
  • Natalya A. Serdukova
  • Feodor N. Golenishchev
  • Vladimir A. Trifonov
  • Malcolm A. Ferguson-Smith
  • Fengtang Yang
  • Alexander S. Graphodatsky
Article

Abstract

Cross-species chromosome painting has become the mainstay of comparative cytogenetic and chromosome evolution studies. Here we have made a set of chromosomal painting probes for the field vole (Microtus agrestis) by DOP-PCR amplification of flow-sorted chromosomes. Together with painting probes of golden hamster (Mesocricetus auratus) and mouse (Mus musculus), the field vole probes have been hybridized onto the metaphases of the tundra vole (Microtus oeconomus). A comparative chromosome map between these two voles, golden hamster and mouse has been established based on the results of cross-species chromosome painting and G-banding comparisons. The sets of paints from the field vole, golden hamster and mouse identified a total of 27, 40 and 47 homologous autosomal regions, respectively, in the genome of tundra vole; 16, 41 and 51 fusion/fission rearrangements differentiate the karyotype of the tundra vole from the karyotypes of the field vole, golden hamster and mouse, respectively.

Key words

chromosome painting comparative cytogenetics Microtus agrestis Microtus oeconomus 

References

  1. Aniskin VM (2006) Selected karyotypes. In O’Brien SJ, Nash WG, Menninger JC, eds., Atlas of Mammalian Karyotypes. Chichester: Wiley, pp. 231–233, 235–236, 263.Google Scholar
  2. Avise JC, Walker D, Johns GC (1998) Speciation durations and Pleistocene effects on vertebrate and phylogeography. Proc R Soc Lond B 265: 1707-712.CrossRefGoogle Scholar
  3. Chaline J, Brunet-Lecomte P, Motuire S, Viriot L, Courant F (1999) Anatomy of the arvicoline radiation (Rodentia): paleaogeographical, paleaoecological history and evolutionary data. Ann Zool Fennici 36: 239-67.Google Scholar
  4. Chernjavsky FB, Kozlovsky AI (1980) Species status and history of the Arctic lemmings (Dicrostonyx, Rodentia) of Wrangel Island. Zool J (Moscow) 59: 266–273 (Russian).Google Scholar
  5. Conroy CJ, Cook JA (1999) MtDNA evidence for repeated pulses of speciation within arvicoline and murid rodents. J Mamm Evol 6: 221-45.CrossRefGoogle Scholar
  6. Conroy CJ, Cook JA (2000) Molecular systematics of a holarctic rodent (Microtus: Muridae). J Mammal 81: 344-59.CrossRefGoogle Scholar
  7. DeWoody JA, Chesser RK, Baker RJ (1999) A translocated mitochondrial cytochrome b pseudogene in voles (Rodentia: Microtus). J Mol Evol 48: 380-82.CrossRefPubMedGoogle Scholar
  8. Elisaphenko EA, Nesterova TB, Duthie SM et al. (1998) Repetitive DNA sequences in the common vole: cloning, characterization and chromosome localization of two novel complex repeats MS3 and MS4 from the genome of the East European vole Microtus rossiaemeridionalis. Chromosome Res 6: 351-60.CrossRefPubMedGoogle Scholar
  9. Engelbrecht A, Dobigny G, Robinson TJ (2006) Further insights into the ancestral murine karyotype: the contribution of the Otomys–Mus comparison using chromosome painting. Cytogenet Genome Res 112: 126-30.CrossRefPubMedGoogle Scholar
  10. Fredga K (1988) Aberrant chromosomal sex-determining mechanisms in mammals, with special reference to species with XY females. Phil Trans R Soc Lond B 322: 83-5.CrossRefGoogle Scholar
  11. Fredga K, Lyapunova E (1991) Fertile males with two X chromosomes in Ellobius tancrei (Rodentia, Mammalia). Hereditas 115: 86-7.Google Scholar
  12. Golenishchev FN, Malikov VG (2006) The ‘developmental conduit’ of the tribe Microtini (Rodentia, Arvicolinae): systematic and evolutionary aspects. Russ J Theriol 5: 17-4.Google Scholar
  13. Graphodatsky AS (1989) Conserved and variable elements of mammalian chromosomes. In Halnan C, ed., Cytogenetics of Animals. Oxford: CAB International Press, pp. 95–123.Google Scholar
  14. Graphodatsky AS, Sablina OV, Meyer MN et al. (2000) Comparative cytogenetics of hamsters of the genus Calomyscus. Cytogenet Cell Genet 88: 296-04.CrossRefPubMedGoogle Scholar
  15. Graphodatsky AS, Yang F, O’Brien PCM et al. (2001) Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet Cell Genet 92:243-47.CrossRefPubMedGoogle Scholar
  16. Guilly M-N, Fouchet P, de Chamisso P, Schmitz A, Dutrillaux B (1999) Comparative karyotype of rat and mouse using bidirectional chromosome painting. Chromosome Res 7: 213-21.CrossRefPubMedGoogle Scholar
  17. Guilly M-N, Dano L, de Chamisso P, Fouchet P, Dutrillaux B et al. (2001) Comparative karyotype using biderectional chromosome painting: how and why? Methods Cell Sci 23: 163-70.CrossRefPubMedGoogle Scholar
  18. Jaarola M, Martinkova N, Gündüz I et al. (2004) Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 33: 647-63.CrossRefPubMedGoogle Scholar
  19. Just W, Rau W, Vogel W et al. (1995) Absence of Sry in species of the vole Ellobius. Nature Genet 11: 117-18.CrossRefPubMedGoogle Scholar
  20. Just W, Baumstark A, Hameister H et al. (2002) The sex determination in Ellobius lutescens remains bizarre. Cytogenet Genome Res 96: 146-53.CrossRefPubMedGoogle Scholar
  21. Li T, Wang J, Su W, Yang F (2006) Chromosomal mechanisms underlying the karyotype evolution of the oriental voles (Muridae, Eothenomys). Cytogenet Genome Res 114: 50-5.CrossRefPubMedGoogle Scholar
  22. Marchal JA, Acosta MJ, Bullejos M, Diaz de la Guardia R, Sanchez A (2004a) A repeat DNA sequence from the Y chromosome in species of the genus Microtus. Chromosome Res 12: 757-65.CrossRefGoogle Scholar
  23. Marchal JA, Acosta MJ, Nietzel H et al. (2004b) X chromosome painting in Microtus: origin and evolution of the giant sex chromosomes. Chromosome Res 12: 37-7.Google Scholar
  24. Matsubara K, Nishida-Umehara C, Kuriowa A, Tsuchiya K, Matsuda Y (2003) Identification of chromosome rearrangements between the laboratory mouse (Mus musculus) and the Indian spiny mouse (Mus platythrix) by comparative FISH analysis. Chromosome Res 11: 57-4.CrossRefPubMedGoogle Scholar
  25. Matsubara K, Nishuda-Umehara C, Tsuchiya K, Nukaya D, Matsuda Y (2004) Karyotypic evolution of Apodemus (Muridae, Rodentia) inferred from comparative FISH analyses. Chromosome Res 12: 383-95.CrossRefPubMedGoogle Scholar
  26. Mazurok NA, Rubtsova NV, Isaenko AA et al. (2001) Comparative chromosome and mitochondrial DNA analyses and phylogenetic relationships within common voles (Microtus, Arvicolidae). Chromosome Res 9: 107-20.CrossRefPubMedGoogle Scholar
  27. Meyer MN, Golenishchev FN, Radjabli SI, Sablina OV (1996) Voles (Subgenus Microtus Schrank) of Russia and Ajacent Territories. Russ Acad Sci, Proc Zool Inst 232: 3–320 (Russian).Google Scholar
  28. Modi WS (1987) Phylogenetic analyses of chromosomal banding patterns among the Neartcic Arvicolidae (Mammalia: Rodentia). Syst Zool 36: 109-36.CrossRefGoogle Scholar
  29. Modi WS (1993) Comparative analyses of heterochromatin in Microtus: sequence heterogeneity and localized expansion and contraction of satellite DNA arrays. Cytogenet Cell Genet 62: 142-48.CrossRefPubMedGoogle Scholar
  30. Modi WS (2006) Selected karyotypes. In O’Brien SJ, Nash WG, Menninger JC, eds., Atlas of Mammalian Karyotypes. Chichester: Wiley, pp. 232, 234, 240, 253–254, 262, 269–272, 274–275.Google Scholar
  31. Modi WS, Serdyukova NA, Vorobieva NV, Graphodatsky AS (2003) Chromosomal localization of six repeat DNA sequences among species of Microtus (Rodentia). Chromosome Res 11: 705-13.CrossRefPubMedGoogle Scholar
  32. Musser GG, Carleton MD (2005) Order Rodentia. In Wilson DE, Reeder DM, eds., Mammal Species of the World: a Taxonomic and Geographic Reference. Baltimore: Johns Hopkins University Press, pp. 926–930, 1039–1186.Google Scholar
  33. Nanda I, Neitzel H, Sperling K et al. (1988) Simple GATCA repeats characterize the X chromosome heterochromatin in Microtus agrestis, European field vole (Rodentia, Cricetidae). Chromosoma 96: 213-19.CrossRefPubMedGoogle Scholar
  34. Rambau RV, Robinson TJ (2003) Chromosome painting in the African four-striped mouse Rhabdomys pumilio: detection of possible murid specific contiguous segment combination. Chromosome Res 11: 91-8.CrossRefPubMedGoogle Scholar
  35. Romanenko SA, Perelman PL, Serdukova NA et al. (2006) Reciprocal chromosome painting between three laboratory rodent species. Mamm Genome 17: 1183-192.CrossRefPubMedGoogle Scholar
  36. Romanenko SA, Volobouev VT, Perelman PL et al. (2007) Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. Chromosome Res doi: 10.1007/s10577-007-1124-3. (Published online).
  37. Sablina OV, Radjabli SI, Graphodatsky AS (2006) Selected karyotypes. In O’Brien SJ, Nash WG, Menninger JC, eds., Atlas of Mammalian Karyotypes. Chichester: Wiley, pp. 237–239, 241–252, 255–262, 264–268, 273, 276–279.Google Scholar
  38. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2: 971-72.CrossRefPubMedGoogle Scholar
  39. Shenbrot GI, Krasnov BR (2005) An Atlas of the Geographic Distribution of the Arvicoline Rodents of the World (Rodentia, Muridae: Arvicolinae). Sofia-Moscow: Pensoft Publ. 3-50Google Scholar
  40. Stanyon R, Yang F, Cavagna P et al. (1999) Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats. Cytogenet Cell Genet 84: 150-55.CrossRefPubMedGoogle Scholar
  41. Stanyon R, Yang F, Morescalchi AM, Galleni L (2004) Chromosome painting in the long-tailed field mouse provides insights into the ancestral murid karyotype. Cytogenet Genome Res 105: 406-11.CrossRefPubMedGoogle Scholar
  42. Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-data estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53: 533-53.CrossRefPubMedGoogle Scholar
  43. Telenius H, Pelmear AH, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4: 257-63.CrossRefPubMedGoogle Scholar
  44. Triant DA, DeWoody JA (2006) Accelerated molecular evolution in Microtus (Rodentia) as assessed via complete mitochondrial genome sequences. Genetica 128: 95-08.CrossRefPubMedGoogle Scholar
  45. Veyrunes F, Dobigny G, Yang F, O’Brien PCM, Catalan J, Robinson TJ, Britton-Davidian J (2006) Phylogenomics of the genus Mus (Rodentia; Muridae): extensive genome repatterning is not restricted to the house mouse. Proc R Soc B 273: 2925-934.CrossRefPubMedGoogle Scholar
  46. Volobouev VT, Gallardo MH, Graphodatsky AS (2006) Rodents cytogenetics. In O’Brien SJ, Nash WG, Menninger JC, eds., Atlas of Mammalian Karyotypes. Chichester: Wiley, pp. 173–176.Google Scholar
  47. Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103: 642-52.CrossRefPubMedGoogle Scholar
  48. Yang F, O’Brien PC, Milne BS et al. (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62:189-02.CrossRefPubMedGoogle Scholar
  49. Yang E, O'Brien PCM, Ferguson-Smith MA (2000) Comparative chromosome map of the laboratory mouse and Chinese hamster defined by reciprocal chromosome painting. Chromosome Res 8: 219-27.CrossRefPubMedGoogle Scholar
  50. Zheng S-H, Zhang Z-Q (2000) Late Miocene–Early Pleistocene micromammals from Wenwanggou of Lingtai, Gansu, China. Vertebrata PalAsiatica 38: 58-1.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Natalia A. Sitnikova
    • 1
  • Svetlana A. Romanenko
    • 1
  • Patricia C. M. O’Brien
    • 2
  • Polina L. Perelman
    • 1
  • Beiyuan Fu
    • 2
  • Nadezhda V. Rubtsova
    • 1
  • Natalya A. Serdukova
    • 1
  • Feodor N. Golenishchev
    • 3
  • Vladimir A. Trifonov
    • 1
    • 2
  • Malcolm A. Ferguson-Smith
    • 2
  • Fengtang Yang
    • 4
  • Alexander S. Graphodatsky
    • 1
  1. 1.Institute of Cytology and Genetics, SB RASNovosibirskRussia
  2. 2.Cambridge Resource Centre for Comparative Genomics, Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
  3. 3.Zoological Institute, RASSaint-PetersburgRussia
  4. 4.Wellcome Trust Sanger InstituteWellcome Trust Genome CampusCambridgeUK

Personalised recommendations