Chromosome Research

, 15:439

Characterisation of Zygosaccharomyces rouxii centromeres and construction of first Z. rouxii centromeric vectors

  • Lenka Pribylova
  • Marie-Laure Straub
  • Hana Sychrova
  • Jacky de Montigny
Article

Abstract

Zygosaccharomyces rouxii is a hemiascomycetous yeast known for its high osmotolerance, the basis of which still remains unknown. By exploring the Génolevures I database, four Z. rouxii fragments homologous to Saccharomyces cerevisiae centromeres were identified. Two of them were subjected to further analysis. Their function as centromeres in Z. rouxii was proved, and they were localized to Z. rouxii chromosomes II and VII, respectively. The species-specificity of centromeres was observed; plasmids with a Z. rouxii centromere were not recognized as centromeric in S. cerevisiae, and a S. cerevisiae centromere did not function as a centromere in Z. rouxii. Constructed plasmids bearing Z. rouxii centromeres serve as the first specific centromeric plasmids, and thus contribute to the so-far limited set of genetic tools needed to study the Z. rouxii specific features.

Key words

Hemiascomycetous centromeres Zygosaccharomyces rouxii Zygosaccharomyces rouxii monocopy plasmid 

References

  1. Barnett J, Payne R, Yarrow D (1990) Yeasts, Characteristics and Identification, 2nd edition. Cambridge & New York: Cambridge University Press.Google Scholar
  2. Clarke L (1998) Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr Opin Genet Dev 8: 212-18.CrossRefPubMedGoogle Scholar
  3. de Montigny J, Straub M, Potier S et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 8. Zygosaccharomyces rouxii. FEBS Lett 487: 52-5.CrossRefPubMedGoogle Scholar
  4. Dujon B, Sherman D, Fischer G et al. (2004) Genome evolution in yeasts. Nature 430: 35-4.CrossRefPubMedGoogle Scholar
  5. Gietz RD, Sugino A (1988) New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527-34.CrossRefPubMedGoogle Scholar
  6. Goffeau A, Barrell BG, Bussey H et al. (1996) Life with 6000 genes. Science 274: 563-67.CrossRefGoogle Scholar
  7. Heus JJ, Zonneveld BJ, de Steensma HY, van den Berg JA (1993) The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae. Mol Gen Genet 236: 355-62.CrossRefPubMedGoogle Scholar
  8. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267-72.CrossRefPubMedGoogle Scholar
  9. Hosono K (1992) Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerant yeast Zygosaccharomyces rouxii. J Gen Microbiol 138: 91-6.Google Scholar
  10. Meilhoc E, Masson JM, Teissie J (1990) High efficiency transformation of intact yeast cells by electric field pulses. Biotechnology 8: 223-27.CrossRefPubMedGoogle Scholar
  11. Murphy M, Fitzgerald-Hayes M (1990) Cis- and trans-acting factors involved in centromere function in Saccharomyces cerevisiae. Mol Microbiol 4: 329-36.CrossRefPubMedGoogle Scholar
  12. Pribylova L, Sychrova H (2003) Efficient transformation of the osmotolerant yeast Zygosaccharomyces rouxii by electroporation. J Microbiol Methods 55: 481-84.CrossRefPubMedGoogle Scholar
  13. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.Google Scholar
  14. Sanyal K, Baum M, Carbon J (2004) Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc Natl Acad Sci USA 101: 11374-1379.CrossRefPubMedGoogle Scholar
  15. Souciet J-L, Aigle M, Artiguenave F et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett 487: 3-2.CrossRefPubMedGoogle Scholar
  16. Sychrova H, Braun V, Potier S, Souciet J-L (2000) Organization of specific genomic regions of Zygosaccharomyces rouxii and Pichia sorbitophila: comparison with Saccharomyces cerevisiae. Yeast 16: 1377-385.CrossRefPubMedGoogle Scholar
  17. Ushio K, Tatsumi H, Araki H, Toh-e A, Oshima, Y (1988) Construction of a host–vector system in the osmophilic haploid yeast Zygosaccharomyces rouxii. J Ferment Technol 66: 481-88.CrossRefGoogle Scholar
  18. Vezinhet F, Blondin B, Hallet JN (1990) Chromosomal DNA patterns and mitochondrial-DNA polymorphism as tools for identification of enological strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 32: 568-71.CrossRefGoogle Scholar
  19. Wallis JW, Chrebet G, Brodsky G, Rolfe M, Rothstein R (1989) A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell 58: 409-19.CrossRefPubMedGoogle Scholar
  20. Yanisch-Perron C, Vieira J, Messing J (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103-19.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Lenka Pribylova
    • 1
    • 2
  • Marie-Laure Straub
    • 2
  • Hana Sychrova
    • 1
  • Jacky de Montigny
    • 2
  1. 1.Department of Membrane TransportInstitute of Physiology, v.v.i.Prague 4Czech Republic
  2. 2.Laboratory of Molecular Genetics, Genomics and Microbiology, Institute of BotanyLouis Pasteur University & CNRSStrasbourgFrance

Personalised recommendations