Chromosome Research

, Volume 15, Issue 1, pp 51–66 | Cite as

Chromosome-based genomics in the cereals

  • Jaroslav Doležel
  • Marie Kubaláková
  • Etienne Paux
  • Jan Bartoš
  • Catherine Feuillet
Article

Abstract

The cereals are of enormous importance to mankind. Many of the major cereal species – specifically, wheat, barley, oat, rye, and maize – have large genomes. Early cytogenetics, genome analysis and genetic mapping in the cereals benefited greatly from their large chromosomes, and the allopolyploidy of wheat and oats that has allowed for the development of many precise cytogenetic stocks. In the genomics era, however, large genomes are disadvantageous. Sequencing large and complex genomes is expensive, and the assembly of genome sequence is hampered by a significant content of repetitive DNA and, in allopolyploids, by the presence of homoeologous genomes. Dissection of the genome into its component chromosomes and chromosome arms provides an elegant solution to these problems. In this review we illustrate how this can be achieved by flow cytometric sorting. We describe the development of methods for the preparation of intact chromosome suspensions from the major cereals, and their analysis and sorting using flow cytometry. We explain how difficulties in the discrimination of specific chromosomes and their arms can be overcome by exploiting extant cytogenetic stocks of polyploid wheat and oats, in particular chromosome deletion and alien addition lines. Finally, we discuss some of the applications of flow-sorted chromosomes, and present some examples demonstrating that a chromosome-based approach is advantageous for the analysis of the complex genomes of cereals, and that it can offer significant potential for the delivery of genome sequencing and gene cloning in these crops.

Key words

chromosome sorting chromosome-specific BAC libraries flow cytometry physical mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allouis S, Moore G, Bellec A et al. (2003) Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm ‘Chinese Spring’. Cereal Res Commun 31: 331–338.Google Scholar
  2. Arumuganathan K, Martin GB, Telenius H, Tanksley SD, Earle ED (1994) Chromosome 2-specific DNA clones from flow-sorted chromosomes of tomato. Mol Gen Genet 242: 551–558.PubMedCrossRefGoogle Scholar
  3. Aston C, Mishra B, Schwartz DC (1999) Optical mapping and its potential for large-scale sequencing projects. Trends Biotech 17: 297–302.CrossRefGoogle Scholar
  4. Bennett MD, Smith J (1976) Nuclear DNA amounts in angiosperms. Phil Trans R Soc B 274: 227–274.PubMedGoogle Scholar
  5. Chalhoub B, Belcram H, Caboche M (2004) Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size. Plant Biotechnol J 2: 181–188.PubMedCrossRefGoogle Scholar
  6. Dean FB, Nelson JR, Giesler TL, Lasken RS (2001) Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11: 1095–1099.PubMedCrossRefGoogle Scholar
  7. de Jong JH, Fransz P, Zabel P (1999) High resolution FISH in plants – techniques and applications. Trends Plant Sci 4: 258–263.CrossRefGoogle Scholar
  8. Doležel J, Lucretti S (1995) High-resolution flow karyotyping and chromosome sorting in Vicia faba lines with standard and reconstructed karyotypes. Theor Appl Genet 90: 797–802.Google Scholar
  9. Doležel J, Číhalíková J, Lucretti S (1992) A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta 188: 93–98.CrossRefGoogle Scholar
  10. Doležel J, Greilhuber J, Lucretti S, et al. (1998) Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann Bot 82 (Suppl. A): 17–26.CrossRefGoogle Scholar
  11. Doležel J, Lucretti S, Schubert I (1994) Plant chromosome analysis and sorting by flow cytometry. Crit Rev Plant Sci 13: 275–309.Google Scholar
  12. Doležel J, Kubaláková M, Bartoš J, Macas J (2004) Flow cytogenetics and plant genome mapping. Chromosome Res 12: 77–91.PubMedCrossRefGoogle Scholar
  13. Doležel J, Kubaláková M, Bartoš J, Macas J (2005a) Chromosome flow sorting and physical mapping. In Meksem K, Kahl G, eds., The Handbook of Plant Genome Mapping. Genetic and Physical Mapping. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 151–171.CrossRefGoogle Scholar
  14. Doležel J, Kubaláková M, Suchánková P et al. (2005b) Flow cytogenetic analysis of the wheat genome. In Tsunewaki K, ed., Frontiers of Wheat Bioscience. Hundredth Memorial Issue of Wheat Information Service. Yokohama: Kihara Memorial Yokohama Foundation for the Advancement of Life Sciences, pp. 3–15.Google Scholar
  15. Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87: 295–307.Google Scholar
  16. Feldman M, Levy AA (2005) Allopolyploidy – a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109: 250–258.PubMedCrossRefGoogle Scholar
  17. Fuchs J, Houben A, Brandes A, Schubert I (1996) Chromosome ‘painting’ in plants – A feasible technique? Chromosoma 104: 315–320.PubMedGoogle Scholar
  18. Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum L.). Genome 34: 830–839.Google Scholar
  19. Gill KS, Arumuganathan K, Le JH (1999) Isolating individual wheat (Triticum aestivum) chromosome arm by flow cytometric analysis of ditelosomic lines. Theor Appl Genet 98: 1248–1252.CrossRefGoogle Scholar
  20. Goff SA, Ricke D, Lan TH et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296: 92–100.PubMedCrossRefGoogle Scholar
  21. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436: 793–800.CrossRefGoogle Scholar
  22. Isidore E, Scherrer B, Bellec A et al. (2005) Direct targeting and rapid isolation of BAC clones spanning a defined chromosome region. Func Integr Genomics 5: 97–103.CrossRefGoogle Scholar
  23. Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat–barley chromosome addition lines. Heredity 46: 161–174.Google Scholar
  24. Islam AKMR, Shepherd KW (1990) Incorporation of barley chromosomes into wheat. In Bajaj YPS, ed., Biotechnology in Agriculture and Forestry 13: Wheat. Berlin: Springer-Verlag, pp. 128–151.Google Scholar
  25. Islam AKMR, Shepherd KW (2000) Isolation of a fertile wheat– barley addition line carrying the entire barley chromosome 1H. Euphytica 111: 145–149.CrossRefGoogle Scholar
  26. Janda J, Bartoš J, Šafář J et al. (2004) Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor Appl Genet 109: 1337–1345.PubMedCrossRefGoogle Scholar
  27. Janda J, Šafář J, Kubaláková M et al. (2006) Novel resources for wheat genomics: BAC library specific for the short arm of chromosome 1B. Plant J 47: 977–986.PubMedCrossRefGoogle Scholar
  28. Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73: 199–212.CrossRefGoogle Scholar
  29. Joppa LR (1993) Chromosome engineering in tetraploid wheat. Crop Sci 33: 908–913.CrossRefGoogle Scholar
  30. Kovářová P, Navrátilová A, Macas J, Doležel J (2007) Chromosome analysis and sorting in common vetch (Vicia sativa L.) using flow cytometry. Biol Plant 51: 43–48.Google Scholar
  31. Kubaláková M, Vrána J, Číhalíková J, Lysák MA, Doležel J (2001) Localisation of DNA sequences on plant chromosomes using PRINS and C-PRINS. Methods Cell Sci 23: 71–82.PubMedCrossRefGoogle Scholar
  32. Kubaláková M, Vrána J, Číhalíková J, Šimková H, Doležel J (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet 104: 1362–1372.PubMedCrossRefGoogle Scholar
  33. Kubaláková M, Valárik M, Bartoš J (2003) Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46: 893–905.PubMedCrossRefGoogle Scholar
  34. Kubaláková M, Kovářová P, Suchánková P (2005) Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170: 823–829.PubMedCrossRefGoogle Scholar
  35. Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154: 397–412.PubMedGoogle Scholar
  36. Kynast RG, Okagaki RJ, Galatowitsch MW (2004) Dissecting the maize genome by using chromosome addition and radiation hybrid lines. Proc Natl Acad Sci USA 101: 9921–9926.PubMedCrossRefGoogle Scholar
  37. Laurie DA, Bennett MD (1985). Nuclear DNA content in the genera Zea and Sorghum Intergeneric, interspecific and intraspecific variation. Heredity 55: 307.Google Scholar
  38. Lee JH, Arumuganathan K (1999) Metaphase chromosome accumulation and flow karyotypes in rice (Oryza sativa L.) root tip meristem cells. Mol Cells 9: 436–439.PubMedGoogle Scholar
  39. Lee JH, Arumuganathan K, Kaeppler SM, Kaeppler HF, Papa CM (1996) Cell synchronization and isolation of metaphase chromosomes from maize (Zea mays L) root tips for flow cytometric analysis and sorting. Genome 39: 697–703.PubMedGoogle Scholar
  40. Lee JH, Arumuganathan K, Yen Y, Kaeppler S, Kaeppler H, Baenziger PS (1997) Root tip cell cycle synchronization and metaphase-chromosome isolation suitable for flow sorting in common wheat (Triticum aestivum L.). Genome 40: 633–638.PubMedGoogle Scholar
  41. Lee JH, Arumuganathan K, Chung YS et al. (2000) Flow cytometric analysis and chromosome sorting of barley (Hordeum vulgare L.). Mol Cells 10: 619–625.PubMedCrossRefGoogle Scholar
  42. Lee JH, Arumuganathan K, Kaeppler SM et al. (2002) Variability of chromosomal DNA contents in maize (Zea mays L.) inbred and hybrid lines. Planta 215: 666–671.PubMedCrossRefGoogle Scholar
  43. Li L, Arumuganathan K (2001) Physical mapping of 45S and 5S rDNA on maize metaphase and sorted chromosomes by FISH. Hereditas 134: 141–145.PubMedCrossRefGoogle Scholar
  44. Linde-Laursen I (1988) Giemsa C-banding of barley chromosomes. VI. Localization of breakpoints in 70 reciprocal translocations. Hereditas 108: 65–76.Google Scholar
  45. Lucretti S, Doležel J (1997) Bivariate flow karyotyping in broad bean (Vicia faba). Cytometry 28: 236–242.PubMedCrossRefGoogle Scholar
  46. Lucretti S, Doležel J, Schubert I, Fuchs J (1993) Flow karyotyping and sorting of Vicia faba chromosomes. Theor Appl Genet 85: 665–672.CrossRefGoogle Scholar
  47. Luo MC, Thomas C, You FM et al. (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82: 378–389.PubMedCrossRefGoogle Scholar
  48. Lysák MA, Číhalíková J, Kubaláková M, Šimková H, Künzel G, Doležel J (1999) Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.). Chrom Res 7: 431–444.PubMedCrossRefGoogle Scholar
  49. Macas J, Doležel J, Gualberti G, Pich U, Schubert I, Lucretti S (1995) Primer-induced labeling of pea and field bean chromosomes in situ and in suspension. BioTechniques 19: 402–408.PubMedGoogle Scholar
  50. Marthe F, Künzel G (1994) Localization of translocation breakpoints in somatic metaphase chromosomes of barley. Theor Appl Genet 89: 240–248.CrossRefGoogle Scholar
  51. Messing J, Bharti AK, Karlowski WM et al. (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101: 14349–14354.PubMedCrossRefGoogle Scholar
  52. Meyers BC, Scalabrin S, Morgante M (2004) Mapping and sequencing complex genomes: let’s get physical! Nature Rev Genet 5: 578–581.CrossRefPubMedGoogle Scholar
  53. Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102: 9842–9847.PubMedCrossRefGoogle Scholar
  54. Paterson AH (2006) Leafing through the genomes of our major crop plants: strategies for capturing unique information. Nat Rev Genet 7: 174–184.PubMedCrossRefGoogle Scholar
  55. Paux E, Roger D, Badaeva E et al. (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48: 463–474.PubMedCrossRefGoogle Scholar
  56. Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40: 589–593.PubMedGoogle Scholar
  57. Potz H, Schubert V, Houben A, Schubert I, Weber WE (1996) Aneuploids as a key for new molecular cloning strategies: development of DNA markers by microdissection using Triticum aestivumAegilops markgrafii chromosome addition line B. Euphytica 89: 41–47.CrossRefGoogle Scholar
  58. Požárková D, Koblížková A, Román B (2002) Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol Plant 45: 337–345.CrossRefGoogle Scholar
  59. Qi LL, Echalier B, Chao SA et al. (2004) Chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168: 701–712.PubMedCrossRefGoogle Scholar
  60. Riera-Lizarazu O, Rines HW, Phillips RL (1996) Cytological and molecular characterization of oat × maize partial hybrids. Theor Appl Genet 93: 123–135.CrossRefGoogle Scholar
  61. Román B, Šatovič Z, Požárková D et al. (2004) Development of a composite map in Vicia faba, breeding applications and future prospects. Theor Appl Genet 108: 1079–1088.PubMedCrossRefGoogle Scholar
  62. Röder MS, Korzun V, Gill BS, Ganal MW (1998) The physical mapping of microsatellite markers in wheat. Genome 41: 278–283.CrossRefGoogle Scholar
  63. Šafář J, Bartoš J, Janda J et al. (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39: 960–968.PubMedCrossRefGoogle Scholar
  64. Šafář J, Šimková H, Suchánková P et al. (2006) A novel resource for genomics of rye and wheat: BAC library specific for the short arm of chromosome 1R (1RS). In: Abstracts of the International Conference ‘Plant and Animal Genome XIV’. San Diego: Sherago International, p. 115.Google Scholar
  65. Schlegel R, Melz G, Nestrowicz R (1987) A universal reference karyotype in rye, Secale cereale L. Theor Appl Genet 74: 820–826.CrossRefGoogle Scholar
  66. Schubert I, Doležel J, Houben A, Scherthan H, Wanner G (1993) Refined examination of plant metaphase chromosome structure at different levels made feasible by new isolation methods. Chromosoma 102: 96–101.CrossRefGoogle Scholar
  67. Schwarzacher T, Wang ML, Leitch AR, Miller N, Moore G, Heslop-Harrison JS (1997) Flow cytometric analysis of the chromosomes and stability of a wheat cell-culture line. Theor Appl Genet 94: 91–97.CrossRefPubMedGoogle Scholar
  68. Sears ER (1954) The aneuploids of common wheat. Missouri Agric Exp Stn Res Bull 572: 1–58.Google Scholar
  69. Shi F, Endo TR (1997) Production of wheat–barley disomic addition lines possessing an Aegilops cylindrica gametocidal chromosome. Genes Genet Syst 72: 243–248.CrossRefGoogle Scholar
  70. Šimková H, Číhalíková J, Vrána J, Lysák MA, Doležel J (2003) Preparation of high molecular weight DNA from plant nuclei and chromosomes isolated from root tips. Biol Plantarum 46: 369–373.CrossRefGoogle Scholar
  71. Stein N, Ponelies N, Musket T, McMullen M, Weber G (1998) Chromosome micro-dissection and region-specific libraries from pachytene chromosomes of maize (Zea mays L.). Plant J 13: 281–289.CrossRefGoogle Scholar
  72. Suchánková P, Kubaláková M, Kovářová P et al. (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor Appl Genet 113: 651–659.PubMedCrossRefGoogle Scholar
  73. Telenius H, Carter NP, Bebb CE, Nordenskjöld M, Ponder BAJ, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13: 718–725.PubMedCrossRefGoogle Scholar
  74. ten Hoopen R, Manteuffel R, Doležel J, Malysheva L, Schubert I (2000) Evolutionary conservation of kinetochore protein sequences in plants. Chromosoma 109: 482–489.PubMedGoogle Scholar
  75. Thangavelu M, James AB, Bankier A, Bryan GJ, Dear PH, Waugh R (2003) HAPPY mapping in a plant genome: reconstruction and analysis of a high-resolution physical map of a 1.9 Mbp region of Arabidopsis thaliana chromosome 4. Plant Biotech J 1: 23–31.CrossRefGoogle Scholar
  76. Valárik M, Bartoš J, Kovářová P, Kubaláková M, de Jong H, Doležel J (2004) High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J 37: 940–950.PubMedCrossRefGoogle Scholar
  77. Venora GS, Blangiforti MR, Castiglione D et al. (2002) Chromatin organisation and computer aided karyotyping of Triticum durum Desf. cv. Timilia. Caryologia 55: 91–98.Google Scholar
  78. Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA, Doležel J (2000) Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156: 2033–2041.PubMedGoogle Scholar
  79. Wang ML, Leitch AR, Schwarzacher T, Heslop-Harrison JS, Moore G (1992) Construction of a chromosome-enriched HpaII library from flow-sorted wheat chromosomes. Nucleic Acids Res 20: 1897–1901.PubMedCrossRefGoogle Scholar
  80. Wenzl P, Carling J, Kudrna D et al. (2004) Diversity arrays technology (DArT) for whole-genome profiling of barely. Proc Natl Acad Sci USA 101: 9915–9920.PubMedCrossRefGoogle Scholar
  81. Xu YB, McCouch SR, Zhang QF (2005) How can we use genomics to improve cereals with rice as a reference genome? Plant Mol Biol 59(1): 7–26.PubMedCrossRefGoogle Scholar
  82. Yoshino M, Nasuda S, Endo TR (1998) Detection of terminal deletions in barley chromosomes by the PCR-based method. Genes Genet Syst 73: 163–168.CrossRefGoogle Scholar
  83. Yu J, Hu SN, Wang J et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science 296: 79–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jaroslav Doležel
    • 1
    • 2
  • Marie Kubaláková
    • 1
    • 2
  • Etienne Paux
    • 3
  • Jan Bartoš
    • 1
  • Catherine Feuillet
    • 3
  1. 1.Laboratory of Molecular Cytogenetics and CytometryInstitute of Experimental BotanyOlomoucCzech Republic
  2. 2.Department of Cell Biology and GeneticsPalacký UniversityOlomoucCzech Republic
  3. 3.UMR ASP 1095, INRA-Université Blaise PascalClermont-FerrandFrance

Personalised recommendations