Chromosome Research

, Volume 15, Issue 1, pp 85–95 | Cite as

Cytogenetics and genome analysis in Brassica crops

Article

Abstract

The genus Brassica contains a wide range of diploid and amphipolyploid species including some of the most important vegetable, condiment and oilseed crops worldwide. As members of the Brassicaceae family the brassicas are the closest crop relatives to the model plant Arabidopsis thaliana, and hence are major beneficiaries from the vast array of Arabidopsis molecular genetic and genomic tools and the increasingly good annotation to major Brassica crop genomes. In this review examples are shown from recent studies that demonstrate the potential for intergenome navigation from model to crop plant and for comparisons among genetic and cytogenetic maps between the model and crop species and among different crop brassicas. The use of interspecific and intergeneric hybridization for introgression of novel traits into Brassica genomes from the secondary and tertiary crucifer genepools is described. In this context the use of the Brassica triangle of three diploid species and their corresponding amphiploids as an excellent model system for studying the mechanisms and control of homeologous recombination and polyploidization is discussed from a crop breeding perspective.

Key words

Brassica comparative genomics cytogenetics genome analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alix K, Heslop-Harrison JS (2004) The diversity of retroelements in diploid and allotetraploid Brassica species. Plant Mol Biol 54: 895–909.PubMedCrossRefGoogle Scholar
  2. Alix K, Ryder C, Moore J, King GJ, Heslop-Harrison JS (2005) The genomic organization of retrotransposans in Brassica oleracea. Plant Mol Biol 59: 839–851.PubMedCrossRefGoogle Scholar
  3. Armstrong SJ, Fransz P, Marshall DF, Jones GH (1998) Physical mapping of DNA repetitive sequences to mitotic and meiotic chromosomes of Brassica oleracea var. alboglabra by fluorescence in situ hybridisation. Heredity 81: 666–673.CrossRefGoogle Scholar
  4. Attia T, Röbbelen G (1986) Cytogenetic relationship within cultivated Brassica analyzed in amphihaploids from the three diploid ancestors. Can J Genet Cytol 28: 323–329.Google Scholar
  5. Attia T, Busso C, Röbbelen G (1987) Digenomic triploids for an assessment of chromosome relationships in the cultivated diploid Brassica species. Genome 29: 326–330.Google Scholar
  6. Bancroft I (2006) The multinational Brassica genome project. Acta Hort 706: 65–67.Google Scholar
  7. Benabdelmouna A, Guéritaine G, Abirached-Darmency M, Darmency H (2003) Genome discrimination in progeny of interspecific hybrids between Brassica napus and Raphanus raphanistrum. Genome 46: 469–472.PubMedCrossRefGoogle Scholar
  8. Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42: 251–269.PubMedCrossRefGoogle Scholar
  9. Capesius I (1983) Sequence of the cryptic satellite DNA from the plant Sinapis alba. Biochim Biophys Acta 739: 276–280.Google Scholar
  10. Chen BY, Simonsen V, Lannér-Herrera C, Heneen WK (1992) A Brassica campestris-alboglabra addition line and its use for gene mapping, intergenomic gene transfer and generation of trisomics. Theor Appl Genet 84: 592–599.Google Scholar
  11. Chen BY, Cheng BF, Jörgensen RB, Heneen WK (1997a) Production and cytogenetics of Brassica campestris-alboglabra chromosome addition lines. Theor Appl Genet 94: 633–640.CrossRefGoogle Scholar
  12. Chen BY, Jørgensen RB, Cheng BF, Heneen WK (1997b) Identification and chromosomal assignment of RAPD markers linked with a gene for seed colour in a Brassica campestris-alboglabra addition line. Hereditas 126: 133–138.CrossRefGoogle Scholar
  13. Chèvre AM, This P, Eber F et al. (1991) Characterization of disomic addition lines Brassica napus–Brassica nigra by isozyme, fatty acid, and RFLP markers. Theor Appl Genet 81: 43–49.CrossRefGoogle Scholar
  14. Chèvre AM, Eber F, This P et al. (1996) Characterization of Brassica nigra chromosomes and of blackleg resistance in B. napus – B. nigra addition lines. Plant Breed 115: 113–118.CrossRefGoogle Scholar
  15. Fahleson J, Lagercrantz U, Mouras A, Glimelius K (1997) Characterization of somatic hybrids between Brassica napus and Eruca sativa using species-specific repetitive sequences and genomic in situ hybridization. Plant Sci 123: 133–142.CrossRefGoogle Scholar
  16. Fukui K, Nakayama S, Ohmido N, Yoshiaki H, Yambe M (1998) Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45SrDNA loci on the identified chromosomes. Theor Appl Genet 96: 325–330.CrossRefGoogle Scholar
  17. Grellet F, Delcasso D, Panabires F, Delseny M (1986) Organization and evolution of a higher plant alphoid-like satellite DNA sequence. J Mol Biol 187: 495–507.PubMedCrossRefGoogle Scholar
  18. Gupta V, Lakshmisita G, Shaila MS, Jagannathan V, Lakshmikumaran MS (1992) Characterization of species-specific repeated DNA sequences from B. nigra. Theor Appl Genet 84: 397–402.CrossRefGoogle Scholar
  19. Hallden C, Bryngelsson T, Sail T, Gustafsson M (1987) Distribution and evolution of a tandemly repeated DNA sequence in the family Brassicaceae. J Mol Evol 25: 318–323.Google Scholar
  20. Harbinder S, Lakshmikumaran M (1990) A repetitive sequence from Diplotaxis erucoides is highly homologous to that of Brassica campestris and B. oleracea. Plant Mol Biol 15: 155–156.PubMedCrossRefGoogle Scholar
  21. Harrison GE, Heslop-Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90: 157–165.CrossRefGoogle Scholar
  22. Howell EC, Barker GC, Jones GH et al. (2002) Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics 161: 1225–1234.PubMedGoogle Scholar
  23. Hu J, Quiros CF (1991) Molecular and cytological evidence of deletions in alien chromosomes for two monosomic addition lines of Brassica campestris-oleracea. Theor Appl Genet 81: 221–226.CrossRefGoogle Scholar
  24. Iwabuchi M, Itoh K, Shimamoto K (1991) Molecular and cytological characterization of repetitive DNA sequences in Brassica. Theor Appl Genet 81: 349–355.CrossRefGoogle Scholar
  25. Jackson SA, Cheng ZK, Wang ML, Goodman HM, Jiang JM (2000) Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics 156: 833–838.PubMedGoogle Scholar
  26. Jenczewski E, Eber F, Grimaud A et al. (2003) PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164: 645–653.PubMedGoogle Scholar
  27. Koch MA, B. Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17: 1483–1498.PubMedGoogle Scholar
  28. Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144: 1903–1910.PubMedGoogle Scholar
  29. Lan TH, Del Monte TA, Reischmann KP et al. (2000) An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res 10: 776–788.PubMedCrossRefGoogle Scholar
  30. Lenoir A, Cournoyer B, Warwick S, Picard G, Deragon J-M (1997) Evolution of SINE Sl retroposons in Crucifeme plant species. Mol Biol Evol 14: 934–941.PubMedGoogle Scholar
  31. Lim KB, De Jong H, Yang TJ, Park JY, Jin YM, Park BS (2005) Characterisation of rDNAs and tandem repeats in heterochromatin of Brassica rapa. Mol Cells 19: 436–444.PubMedGoogle Scholar
  32. Lim YP, Plaha P, Choi SR et al. (2006) Toward unraveling the structure of Brassica rapa genome. Physiol Plant 126: 585–591.CrossRefGoogle Scholar
  33. Lukens L, Zou F, Lydiate D, Parkin I, Osborn T (2003) Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164: 359–372.PubMedGoogle Scholar
  34. Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140: 336–348.PubMedCrossRefGoogle Scholar
  35. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15: 516–525.PubMedCrossRefGoogle Scholar
  36. Maluszynska J, Hasterok R (2005) Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH. Cytogenet Genome Res 109: 310–314.PubMedCrossRefGoogle Scholar
  37. McGrath JM, Quiros CF, Harada JJ, Landry BS (1990) Identification of Brassica oleracea monosomic alien chromosome addition lines with molecular markers reveals extensive gene duplication. Mol Gen Genom 223: 198–204.Google Scholar
  38. Morinaga T (1933) Interspecific hybridisation in Brassica: 5. The cytology of F1 hybrid of B. carinata and B. alboglabra. Jpn J Bot 6: 467–475.Google Scholar
  39. Morinaga T (1934) Interspecific hybridisation in Brassica: 6. The cytology of B. juncea and B. nigra. Cytologia 6: 62–67.Google Scholar
  40. Olsson G, Hagberg A (1955) Investigations on haploid rape. Hereditas 41: 227–237.CrossRefGoogle Scholar
  41. O’Neill C, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23: 233–243.PubMedCrossRefGoogle Scholar
  42. Osborn TC, Kole C, Parkin IA et al. (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146: 1123–1129.PubMedGoogle Scholar
  43. Osborn TC, Pires JC, Birchler JA et al. (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19: 141–147.PubMedCrossRefGoogle Scholar
  44. Parkin IA, Gulden SM, Sharpe AG et al. (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171: 765–781.PubMedCrossRefGoogle Scholar
  45. Peterka H, Budahn H, Schrader O, Ahne R, Schütze W (2004) Transfer of resistance against the beet cyst nematode from radish (Raphanus sativus) to rape (Brassica napus) by monosomic chromosome addition. Theor Appl Genet 109: 30–41.PubMedCrossRefGoogle Scholar
  46. Quiros CF, Ochoa O, Kianian SF, Douches D (1987) Analysis of the Brassica oleracea genome by the generation of B. campestris-oleracea chromosome addition lines: characterization by isozymes and rDNA genes. Theor Appl Genet 74: 758–766.Google Scholar
  47. Rana D, Van Den Boogaart T, O’Neill CM et al. (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40: 725–733.PubMedCrossRefGoogle Scholar
  48. Riley R, Chapman V (1958) Genetic control of the diploid behavior of hexaploid wheat. Nature 182: 713–715.CrossRefGoogle Scholar
  49. Roy NN (1978) A study on disease variation in the populations of an interspecific cross of Brassica juncea L. × B. napus L. Euphytica 27: 145–149.CrossRefGoogle Scholar
  50. Sacristán MD, Gerdemann M (1986) Different behavior of Brassica juncea and B. carinata as sources of Phoma lingam resistance in experiments of interspecific transfer to B. napus. Z Pflanzenzüchtg 97: 304–314.Google Scholar
  51. Sánchez-Morán E, Benavente E, Orellana J (2001) Analysis of homoeologous-pairing (ph) mutants in allopolyploid wheat. Chromosoma 110: 371–377.PubMedGoogle Scholar
  52. Schelfhout CJ, Snowdon RJ, Cowling WA, Wroth JM (2004) A PCR based B-genome specific marker in Brassica species. Theor Appl Genet 109: 917–921.PubMedCrossRefGoogle Scholar
  53. Schmidt R (2002) Plant genome evolution: lessons from comparative genomics at the DNA level. Plant Mol Biol 48: 21–37.PubMedCrossRefGoogle Scholar
  54. Schmidt R, Acarkan A, Boivin K (2001) Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochem 39: 253–262.CrossRefGoogle Scholar
  55. Sharpe AG, Parkin IAP, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38: 1112–1121.PubMedGoogle Scholar
  56. Sibson DR, Hughes SG, Bryant JA, Fitchett PN (1991) Sequence organization of simple, highly repetitive DNA elements in Brassica species. J Exp Biol 42: 243–249.Google Scholar
  57. Sjödin C, Glimelius K (1989) Transfer of resistance against Phoma lingam to Brassica napus by asymmetric somatic hybridization combined with toxin selection. Theor Appl Genet 78: 513–520.CrossRefGoogle Scholar
  58. Skarzhinskaya M, Landgren M, Glimelius K (1998) Production of intertribal somatic hybrids between Brassica napus L. and Lesquerella fendleri (Gray) Wats. Theor Appl Genet 93: 1242–1250.CrossRefGoogle Scholar
  59. Snowdon RJ, Winter H, Diestel A, Sacristan MD (2000) Development and characterisation of Brassica napusSinapis arvensis addition lines exhibiting resistance to Leptosphaeria maculans. Theor Appl Genet 101: 1008–1014.CrossRefGoogle Scholar
  60. Snowdon RJ, Friedrich T, Friedt W, Köhler W (2002) Identifying the chromosomes of the A and C genome diploid Brassica species B. rapa and B. oleracea in their amphidiploid B. napus. Theor Appl Genet 104: 533–538.PubMedCrossRefGoogle Scholar
  61. Snowdon RJ, Lühs W, Friedt W (2006) Oilseed rape. In Kole C, ed., Genome Mapping and Molecular Breeding, Vol. 2: Oilseeds. Berlin: Springer Verlag, pp. 55–114.Google Scholar
  62. Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92: 7719–7723.PubMedCrossRefGoogle Scholar
  63. Struss D, Bellin U, Röbbelen G (1991) Development of B-genome chromosome addition lines of B. napus using different interspecific Brassica hybrids. Plant Breed 106: 209–214.CrossRefGoogle Scholar
  64. Struss D, Quiros CF, Plieske J, Röbbelen G (1996) Construction of Basilica B genome synteny groups based on chromosomes extracted from three different sources by phenotypic, isozyme and molecular markers. Theor Appl Genet 93: 1026–1032.CrossRefGoogle Scholar
  65. Tatout C, Warwick S, Lenoir A, Deragon J-M (1999) SINE insertions as clade markers for wild crucifer species. Mol Biol Evol 16: 1614–1621.Google Scholar
  66. Town CD, Cheung F, Maiti R et al. (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18: 1348–1359.PubMedCrossRefGoogle Scholar
  67. U N (1935) Genomic analysis of Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7: 389–452.Google Scholar
  68. Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homoeologous recombination in four mapping populations of Brassica napus L. Genetics 169: 967–979.PubMedCrossRefGoogle Scholar
  69. Voss A, Snowdon RJ, Lühs W, Friedt W (2000) Intergeneric transfer of nematode resistance from Raphanus sativus into the Brassica napus genome. Acta Hort 539: 129–134.Google Scholar
  70. Wang YP, Zhao XX, Sonntag K, Wehling P, Snowdon RJ (2005) GISH analysis of BC1 and BC2 progenies derived from somatic hybrids between Brassica napus and Sinapis alba. Chromosome Res 13: 819–826.PubMedCrossRefGoogle Scholar
  71. Warwick SI, Francis A, La Fleche J (2000) Guide to wild germplasm of Brassica and allied crops (tribe Brassiceae, Brassicaceae), 2nd edn. Agriculture and Agri-Food Canada. http://www.brassica.info/resources/crucifer_genetics/guidewild.htm
  72. Xia X, Selvaraj G, Bertrand H (1993) Structure and evolution of a highly repetitive DNA sequence from Brassica napus. Plant Mol Biol 21: 213–224.PubMedCrossRefGoogle Scholar
  73. Yang TJ, Kim JS, Lim KB et al. (2006) An advanced strategy for Brassica genome sequencing using comparative genomics with Arabidopsis. Acta Hort 706: 73–76.Google Scholar
  74. Zhao J, Udall J, Quijada P, Grau C, Meng J, Osborn T (2005) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet 7: 1–8.CrossRefGoogle Scholar
  75. Ziolkowski PA, Sadowski J (2002) FISH-mapping of rDNAs and Arabidopsis BACs on pachytene complements of selected Brassicas. Genome 45: 189–197.PubMedCrossRefGoogle Scholar
  76. Ziolkowski PA, Kaczmarek M, Babula D, Sadowski J (2006) Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J 47: 63–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of Plant Breeding, Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany

Personalised recommendations