Chromosome Research

, Volume 14, Issue 8, pp 909–918 | Cite as

Meiotic behaviour of a new complex X-Y-autosome translocation and amplified heterochromatin in Jumnos ruckeri (Saunders) (Coleoptera, Scarabaeidae, Cetoniinae)

Article

Abstract

Species belonging to the Cetoniinae subfamily studied so far possess 20 chromosomes, including a small X and a punctiform Y: 20,Xyp in the males. In a series of species from the Goliathini tribe under study we found a very unusual karyotype, with 12 autosomes and large sex chromosomes (14,neoXY) in Jumnos ruckieri from Thailand. Applying various techniques including pachytene bivalent spreading, we showed that 40% (mitotic and meiotic prophases) to 60% (metaphases) of the karyotype length was composed of heterochromatin. Both sex chromosomes were NOR carriers. At pachynema they underwent a complete synapsis of their distal regions, indicating their autosomal origin. At contrast, their very uneven central regions remained separated, but associated with nucleolus material. This association persisted until diakinesis, forming a pseudo-chiasma between the neoX and the neoY, which were always in end-to-end association. Compared to free autosomes the autosomal parts of the neo-sex chromosomes had a significant lack of interstitial chiasmata, indicating a possible lack of recombination at their proximal regions. As in the cases of X-autosome translocations in mammals, autosomal and gonosomal parts of the neo-sex chromosomes were insulated by heterochromatin, which may be a necessary condition to avoid deleterious position effects, whatever the mechanisms of gene dosage compensation.

Key words

autosome gonosome heterochromatin Jumnos ruckeri Scarabaeidae translocation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner M (1989) Drosophila: a Laboratory Handbook. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  2. Ashley T (2002) X-autosome translocations, meiotic synapsis, chromosome evolution and speciation. Cytogenet Genome Res 96: 33–39.PubMedCrossRefGoogle Scholar
  3. Couturier J, Dutrillaux B (1983) Replication studies and demonstration of position effect in rearrangements involving the human X chromosome. In Sandberg AA, ed., Cytogenetics of the Mammalian X Chromosome, Part A. New York: Alan R Liss, pp. 375–403.Google Scholar
  4. Dutrillaux AM, Dutrillaux B (2005) Etude chromosomique de Cetonischema speciosa ssp venusta (Men). Cetoniimania 3: 95–100.Google Scholar
  5. Dutrillaux AM, Moulin S, Dutrillaux B (2006) Use of pachytene stage of spermatocytes for karyotypic studies in insects. Chromosome Res 14: 549–557.PubMedCrossRefGoogle Scholar
  6. Dutrillaux B, Rumpler Y (1987) The role of chromosomes in speciation: a new interpretation. In Stahl A, Luciani JM, Vagner Capodano AM, eds., Chromosomes Today, vol. 9. London: Allen & Unwin, pp. 75–90.Google Scholar
  7. Gupta V, Parisi M, Sturgill D et al. (2006) Global analysis of X chromosome dosage compensation. J Biol 5: 3.PubMedCrossRefGoogle Scholar
  8. Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36: 1014.PubMedCrossRefGoogle Scholar
  9. Jaafar H, Gabriel-Robez O, Rumpler Y (1993) Chromosomal anomalies and disturbance of transcriptional activity at the pachytene stage of meiosis: relationship to male sterility. Cytogenet Cell Genet 64: 273–280.PubMedGoogle Scholar
  10. Kasahara S, Dutrillaux B (1983) Chromosome banding patterns of four species of bats, with special referenceto a case of X-autosome translocation. Ann Génét 26: 197–201.PubMedGoogle Scholar
  11. Kleckner N, Stolarzzi A, Zickler D (2003) Coordinate variation in meiotic pachytene SC length and total crossover/chiasma frequency under conditions of constant DNA length. Trends Genet 19: 623–628.PubMedCrossRefGoogle Scholar
  12. Kudoh K, Saitoh K (1973) Chromosome studies of beetles. IV. A chromosome survey of eleven species of the family Scarabaeidae. Sci Rep Hirosaki Univ 20: 88–95.Google Scholar
  13. Lifschytz E, Lindsley D (1972) The role of X chromosome inactivation during spermatogenesis. Proc Natl Acad Sci USA 69: 182–186.PubMedCrossRefGoogle Scholar
  14. Petitpierre E (1988) Chromosome numbers and meioformulae of chrysomelidae. In Jolivet P, Petitpierre E, Hsiao TH, eds., Biology of Chrysomelidae. Dordrecht: Kluwer, pp. 161–186.Google Scholar
  15. Pons J (2004) Evolution of diploid chromosome number, sex-determining systems, and heterochromatin in Western Mediterranean and Canarian species of the genus Pimelia (Coleoptera, Tenebrionidae). J Zool Syst Evol Res 42: 81–85.CrossRefGoogle Scholar
  16. Powell JE, Angus RB (2006) A chromosomal investigation of some European species of Haliplidae (Coleoptera). Mem Soc Entomol Ital 85: 173–185.Google Scholar
  17. Proença SJR, Collares-Pereira MJ, Serrano ARM (2005) New contributions to the cytotaxonomy of tiger beetles (Coleoptera, Cicindelidae) from the afrotropical region: cytogenetic characterization of Prothyma concinna, Elliptica lugubris and Ropaloteres cinctus. Caryologia 18: 56–61.Google Scholar
  18. Ratomponirina C, Viegas-Péquignot E, Dutrillaux B, Petter F, Rumpler Y (1986) Synaptonemal complexes in Gerbillidae: probable role of intercalated heterochromatin in autosome–gonosome translocations. Cytogenet Cell Genet 43: 161–167.PubMedGoogle Scholar
  19. Rodrigues Noronha RC, Nagamachi CY, Pieczarka JC, Marques-Aguiar S, De Sousa Barros RM (2001) Sex-autosome translocations: meiotic behaviour suggests an inactivation block with permanence of automsomal gene activity in Phyllostomids bats. Caryologia 54: 267–277.Google Scholar
  20. Russell LB (1983) X-autosome translocations in the mouse: their characterization and use as tools to investigate gene inactivation and gene action. In Sandberg AA, ed., Cytogenetics of the Mammalian X Chromosome, Part A. New York: Alan R Liss, pp. 205–250.Google Scholar
  21. Sakai K, Nagai S (1998) The Cetoniine Beetles of the World. Japan: Mushi-Sha.Google Scholar
  22. Serrano J, Yadav JS (1984) Chromosome numbers and sex-determining mechanisms in Adiphagan Coleoptera. Coleopt Bull 38:335–357.Google Scholar
  23. Serrano J, Galian J, Ortiz AS (1994) Karyotypic data and current taxonomic ideas of the tribe Harpalini (Coleoptera, Carabidae). In Desender K, Dufrêne M, Loreau M, Luff ML, Maelfait J-P, eds., Carabid Beetles: Ecology and Evolution. Dordrecht: Kluwer, pp. 55–61.Google Scholar
  24. Smith SG, Virkki N (1978) Animal Cytogenetics, vol. 3: Insecta 5: Coleoptera. Berlin: Gebrüder Borstraeger.Google Scholar
  25. Tease C (1978) Cytological detection of crossing-over in BRDU substituted meiotic chromosomes using the fluorescent plus Giemsa technique. Nature 272: 823–824.PubMedCrossRefGoogle Scholar
  26. Tucker PK (1986) Sex chromosome–autosome translocations in the leaf-nosed bats, family Phyllostomidae. I. Mitotic analyses of the subfamilies Stenodermatinae and Phyllostominae. Cytogenet Cell Genet 43: 19–27.PubMedCrossRefGoogle Scholar
  27. Veyrunes F, Catalan J, Sicard B et al. (2004) Autosome and sex chromosome diversity among the African pygmy mice, subgenus Nannomys (Murinae; Mus). Chromosome Res 12: 369–382.PubMedCrossRefGoogle Scholar
  28. Viegas-Péquignot E, Benazzou T, Dutrillaux B, Petter F (1982) Complex evolution of sex chromosomes in Gerbillidae (Rodentia). Cytogenet Cell Genet 34: 158–167.PubMedGoogle Scholar
  29. Vitturi R, Colomba MS, Barbieri R, Zunini M (1999) Ribosomal DNA location in the scarab beetle Thorectes intermedius (Costa) (Coleoptera: Geotrupidae) using banding and fluorescent in situ hybridisation. Chromosome Res 7: 255–260.PubMedCrossRefGoogle Scholar
  30. Wilson CJ, Angus RB (2005) A chromosomal analysis of 21 species of Oniticellini and Onthophagini (Coleoptera, Scarabaeidae). Tijd Entomol 148: 63–76.Google Scholar
  31. Yadav JS, Pillai RK, Karamjeet (1979) Chromosome numbers of Scarabaeidae (Polyphaga, Coleoptera). Coleopt Bull 33: 309–318.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.UMR 5202 CNRS/MNHN, Organisation, Structure et Evolution de la BiodiversitéMuséum National d’Histoire NaturelleParisFrance

Personalised recommendations