Chromosome Research

, Volume 14, Issue 8, pp 817–830 | Cite as

Peculiar behavior of distinct chromosomal DNA elements during and after development in the dicyemid mesozoan Dicyema japonicum

Article

Abstract

The dicyemid mesozoans are obligate parasites that inhabit the cephalopod renal appendage. Dicyemids have a simple body, consisting of approximately 30 cells: one long cylindrical axial cell contains intracellular stem cells (called axoblast), from which embryos are derived, and is surrounded by some 30 peripheral somatic cells. Somatic cells divide at most eight times in their life span, and never divide after differentiation. During early somatic cell development, numerous unique DNA sequences are first amplified and then eliminated, in the form of extrachromosomal circular DNA, leading to genome reduction. In this study we demonstrate that the remaining sequences, single-copy genes and repetitive sequences, have very different fates. Single-copy genes, such as β-tubulin, are initially amplified, presumably via endoreduplication, but subsequently decrease in copy number through development, suggesting that the whole genome is initially amplified and then the amplified DNAs are simply diluted in successive cell divisions, with little DNA replication. In contrast, repetitive sequences are maintained even in terminally differentiated somatic cell nuclei. Considering the increasing intensity of in-situ hybridization, incorporation of BrdU, and a general correlation between nuclear content and cell size, those repetitive sequences must be selectively endoreplicated in the peripheral cell nucleus, concomitant with the increase of cell size. The biological significance of this mechanism is discussed as a unique dicyemid adaptation to parasitism.

Key words

chromatin elimination Dicyema japonicum Dicyemidae DNA excision endoreplication repetitive sequences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aeby P, Spicher A, de Chastonay Y, Müller F, Tobler H (1986) Structure and genomic organization of proretrovirus-like elements partially eliminated from the somatic genome of Ascaris lumbricoides. EMBO J 5: 3353–3360.PubMedGoogle Scholar
  2. Albertson DG, Nwaorgu OC, Sulston JE (1979) Chromatin diminution and a chromosomal mechanism of sexual differentiation in Strongyloides papillosus. Chromosoma 75: 75–87.PubMedCrossRefGoogle Scholar
  3. Ammermann D, Steinbruck G, von Berger L, Hennig W (1974) The development of the macronucleus in the ciliated protozoan Stylonychia mytilus. Chromosoma 45: 401–429.PubMedCrossRefGoogle Scholar
  4. Awata H, Noto T, Endoh H (2005) Differentiation of somatic mitochondria and the structural changes in mtDNA during development of the dicyemid Dicyema japonicum (Mesozoa). Mol Genet Genom 273: 441–449.CrossRefGoogle Scholar
  5. Beaton MJ, Cavalier-Smith T (1999) Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes. Proc Biol Sci 266: 2053–2059.PubMedCrossRefGoogle Scholar
  6. Brownlie JC, O'Neill SL (2005) Wolbachia genomes: insights into an intracellular lifestyle. Curr Biol 15: R507–R509.PubMedCrossRefGoogle Scholar
  7. Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34: 247–278.PubMedGoogle Scholar
  8. Cavalier-Smith T (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot (Lond) 95: 147–175.CrossRefGoogle Scholar
  9. Cavalier-Smith T, Beaton MJ (1999) The skeletal function of non-genic nuclear DNA: new evidence from ancient cell chimaeras. Genetica 106: 3–13.PubMedCrossRefGoogle Scholar
  10. Cohen S, Agmon N, Yacobi K, Mislovati M, Segal D (2005) Evidence for rolling circle replication of tandem genes in Drosophila. Nucleic Acids Res 33: 4519–4526.PubMedCrossRefGoogle Scholar
  11. Edgar BA, Orr-Weaver TL (2001) Endoreplication cell cycles: more for less. Cell 105: 297–306.PubMedCrossRefGoogle Scholar
  12. Embley TM, van der Giezen M, Horner DS, Dyal PL, Foster P (2003) Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Phil Trans R Soc Lond B Biol Sci 358: 191–202.PubMedCrossRefGoogle Scholar
  13. Etter A, Aboutanos M, Tobler H, Müller F (1991) Eliminated chromatin of Ascaris contains a gene that encodes a putative ribosomal protein. Proc Natl Acad Sci USA 88: 1593–1596.PubMedCrossRefGoogle Scholar
  14. Feagin JE (2000) Mitochondrial genome diversity in parasites. Int J Parasitol 30: 371–390.PubMedCrossRefGoogle Scholar
  15. Feagin JE, Gardner MJ, Williamson DH, Wilson RJ (1991) The putative mitochondrial genome of Plasmodium falciparum. J Protozool 38: 243–245.PubMedGoogle Scholar
  16. Felder H, Herzceg A, de Chastonay Y et al (1994) Tas, a retrotransposon from the parasitic nematode Ascaris lumbricoides. Gene 149: 219–225.PubMedCrossRefGoogle Scholar
  17. Frank AC, Amiri H, Andersson SG (2002) Genome deterioration: loss of repeated sequences and accumulation of junk DNA. Genetica 115: 1–12.PubMedCrossRefGoogle Scholar
  18. Furuya H, Tsuneki K (2003) Biology of dicyemid mesozoans. Zool Sci 20: 519–532.PubMedCrossRefGoogle Scholar
  19. Furuya H, Tsuneki K, Koshida Y (1992) Development of the infusoriform embryo of Dicyema japonicum (Mesozoa: Dicyemidae). Biol Bull 183: 248–257.Google Scholar
  20. Furuya H, Tsuneki K, Koshida Y (1994) The development of the vermiform embryos of two mesozoans, Dicyema acuticephalum and Dicyema japonicum. Zool Sci 11: 235–246.Google Scholar
  21. Gray MW (1999) Evolution of organellar genomes. Curr Opin Genet Dev 9: 678–687.PubMedCrossRefGoogle Scholar
  22. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283: 1476–1481.PubMedCrossRefGoogle Scholar
  23. Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev Camb Phil Soc 76: 65–101.CrossRefGoogle Scholar
  24. Gregory TR (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot (Lond) 95: 133–146.CrossRefGoogle Scholar
  25. Gregory TR, Hebert PD, Kolasa J (2000) Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity 84: 201–208.PubMedCrossRefGoogle Scholar
  26. Hartmann M (1906) Untersuchungen über den Generationswechsel der Dicyemiden. Mém Acad R Belg Ser II 1: 1–126.Google Scholar
  27. Huang YJ, Stoffel R, Tobler H, Müller F (1996) A newly formed telomere in Ascaris suum does not exert a telomere position effect on a nearby gene. Mol Cell Biol 16: 130–134.PubMedGoogle Scholar
  28. Hyman LH (1940) Phylum Mesozoa. In Shull F, ed. The Invertebrates 1. Protozoa through Ctenophora 1. New York: McGraw-Hill, pp. 233–247.Google Scholar
  29. Katayama T, Wada H, Furuya H, Satoh N, Yamamoto M (1995) Phylogenetic position of the dicyemid mesozoa inferred from 18S rDNA sequences. Biol Bull 189: 81–90.PubMedGoogle Scholar
  30. Kloc M, Zagrodzinska B (2001) Chromatin elimination–an oddity or a common mechanism in differentiation and development? Differentiation 68: 84–91.PubMedCrossRefGoogle Scholar
  31. Kobayashi M, Furuya H, Holland PW (1999) Dicyemids are higher animals. Nature 401: 762.PubMedCrossRefGoogle Scholar
  32. Kondorosi E, Roudier F, Gendreau E (2000) Plant cell-size control: growing by ploidy? Curr Opin Plant Biol 3: 488–492.PubMedCrossRefGoogle Scholar
  33. Kubota S, Takano J, Tsuneishi R et al (2001) Highly repetitive DNA families restricted to germ cells in a Japanese hagfish (Eptatretus burgeri): a hierarchical and mosaic structure in eliminated chromosomes. Genetica 111: 319–328.PubMedCrossRefGoogle Scholar
  34. Martin W (2005) The missing link between hydrogenosomes and mitochondria. Trends Microbiol 13: 457–459.PubMedCrossRefGoogle Scholar
  35. McConnaughey BH (1951) The life cycle of the dicyemid mesozoa. Univ Calif Publ Zool 55: 295–336.Google Scholar
  36. Müller F, Tobler H (2000) Chromatin diminution in the parasitic nematodes Ascaris suum and Parascaris univalens. Int J Parasitol 30: 391–399.PubMedCrossRefGoogle Scholar
  37. Müller F, Bernard V, Tobler (1996) Chromatin diminution in nematodes. Bioessays 18: 133–138.PubMedCrossRefGoogle Scholar
  38. Niedermaier J, Moritz KB (2000) Organization and dynamics of satellite and telomere DNAs in Ascaris: implications for formation and programmed breakdown of compound chromosomes. Chromosoma 109: 439–452.PubMedGoogle Scholar
  39. Noto T, Endoh H (2004) A ‘chimera’ theory on the origin of dicyemid mesozoans: evolution driven by frequent lateral gene transfer from host to parasite. Biosystems 73: 73–83.PubMedCrossRefGoogle Scholar
  40. Noto T, Yazaki K, Endoh H (2003) Developmentally regulated extrachromosomal circular DNA formation in the mesozoan Dicyema japonicum. Chromosoma 111: 359–368.PubMedGoogle Scholar
  41. Nouvel H (1947) Les Dicyémides. 1re partie: systématique, générations vermiformes, infusorigène et sexualité. Arch Biol 58: 59–220.Google Scholar
  42. Ohama T, Kumazaki T, Hori H, Osawa S (1984) Evolution of multicellular animals as deduced from 5S rRNA sequences: a possible early emergence of the Mesozoa. Nucleic Acids Res 12: 5101–5108.PubMedCrossRefGoogle Scholar
  43. Pawlowski J, Montoya-Burgos JI, Fahrni JF, Wuest J, Zaninetti L (1996) Origin of the Mesozoa inferred from 18S rRNA gene sequences. Mol Biol Evol 13: 1128–1132.PubMedGoogle Scholar
  44. Prescott DM (1992) The unusual organization and processing of genomic DNA in hypotrichous ciliates. Trends Genet 8: 439–445.PubMedGoogle Scholar
  45. Ridley RK (1968) Electron microscopic studies on dicyemid mesozoa. I. Vermiform stages. J Parasitol 54: 975–998.CrossRefGoogle Scholar
  46. Spano F, Crisanti A (2000) Cryptosporidium parvum: the many secrets of a small genome. Int J Parasitol 30: 553–565.PubMedCrossRefGoogle Scholar
  47. Spicher A, Etter A, Bernard V, Tobler H, Müller F (1994) Extremely stable transcripts may compensate for the elimination of the gene fert-1 from all Ascaris lumbricoides somatic cells. Dev Biol 164: 72–86.PubMedCrossRefGoogle Scholar
  48. Waters E, Hohn MJ, Ahel I et al (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100: 12984–12988.PubMedCrossRefGoogle Scholar
  49. Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3: 850–861.PubMedCrossRefGoogle Scholar
  50. Wernegreen JJ (2005) For better or worse: genomic consequences of intracellular mutualism and parasitism. Curr Opin Genet Dev 15: 572–583.PubMedCrossRefGoogle Scholar
  51. Wu M, Sun LV, Vamathevan J et al. (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2: 327–341.CrossRefGoogle Scholar
  52. Zomorodipour A, Andersson SG (1999) Obligate intracellular parasites: Rickettsia prowazekii and Chlamydia trachomatis. FEBS Lett 452: 11–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Division of Life Science, Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
  2. 2.Hayama Center for Advanced Studies (HCAS)Graduate University for Advanced Studies (Sokendai)KanagawaJapan
  3. 3.IMBA–Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria

Personalised recommendations