Advertisement

Chromosome Research

, Volume 14, Issue 7, pp 735–753 | Cite as

CENP-B box and pJα sequence distribution in human alpha satellite higher-order repeats (HOR)

  • Marija Rosandić
  • Vladimir Paar
  • Ivan Basar
  • Matko Glunčić
  • Nenad Pavin
  • Ivan Pilaš
Article

Abstract

Using our Key String Algorithm (KSA) to analyze Build 35.1 assembly we determined consensus alpha satellite higher-order repeats (HOR) and consensus distributions of CENP-B box and pJα motif in human chromosomes 1, 4, 5, 7, 8, 10, 11, 17, 19, and X. We determined new suprachromosomal family (SF) assignments: SF5 for 13mer (2211 bp), SF5 for 13mer (2214 bp), SF2 for 11mer (1869 bp), SF1 for 18mer (3058 bp), SF3 for 12mer (2047 bp), SF3 for 14mer (2379 bp), and SF5 for 17mer (2896 bp) in chromosomes 4, 5, 8, 10, 11, 17, and 19, respectively. In chromosome 5 we identified SF5 13mer without any CENP-B box and pJα motif, highly homologous (96%) to 13mer in chromosome 19. Additionally, in chromosome 19 we identified new SF5 17mer with one CENP-B box and pJα motif, aligned to 13mer by deleting four monomers. In chromosome 11 we identified SF3 12mer, homologous to 12mer in chromosome X. In chromosome 10 we identified new SF1 18mer with eight CENP-B boxes in every other monomer (except one). In chromosome 4 we identified new SF5 13mer with CENP-B box in three consecutive monomers. We found four exceptions to the rule that CENP-B box belongs to type B and pJα motif to type A monomers.

Key words

alphoid arrays CENP-B box higher-order repeat human alpha satellite suprachromosomal family 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. Alexandrov IA, Kazakov A, Tumeneva I, Shepelev V, Yurov Y (2001) Alpha-satellite DNA of primates: old and new families. Chromosoma 110: 253–266.PubMedGoogle Scholar
  2. Alexandrov IA, Mashkova TD, Akopian TA et al. (1991) Chromosome-specific alpha satellites: two distinct families on human chromosome 18. Genomics 11: 15–23.PubMedCrossRefGoogle Scholar
  3. Alexandrov IA, Mitkevich SP, Yurov YB (1988) The phylogeny of human chromosome-specific alpha satellites. Chromosoma (Berlin) 110: 253–266.Google Scholar
  4. Archidiacono N, Antonacci R, Marzella R, Finelli P, Lonoce A, Rocchi M (1995) Comparative mapping of human alphoid sequences in great apes using fluorescence in situ hybridization. Genomics 25: 477–484.PubMedCrossRefGoogle Scholar
  5. Baldini A, Smith DI, Rocchi M, Miller OJ, Miller DA (1989) A human alphoid DNA clone from the EcoRI dimeric family: genomic and internal organization and chromosomal assignment. Genomics 5: 822–828.PubMedCrossRefGoogle Scholar
  6. Basu J, Stromberg G, Compitello G, Willard HF, Van Bokkelen G (2005) Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic Acids Res 33: 587–596.PubMedCrossRefGoogle Scholar
  7. Berge P, Pomeau Y, Vidal C (1984) Order Within Chaos. New York: Wiley.Google Scholar
  8. Choo KHA (1997) The Centromere. Oxford: Oxford University Press.Google Scholar
  9. Choo KH, Brown R, Webb G, Craig IW, Filby RG (1987) Genomic organization of human centromeric alpha satellite DNA: characterization of a chromosome 17 alpha satellite sequence. DNA 6: 297–305.PubMedCrossRefGoogle Scholar
  10. Choo KH, Vissel B, Nagy A, Kalitsis P (1991) A survey of the genomic distribution of alpha satellite DNA on all the human chromosomes and derivation of a new consensus sequence. Nucleic Acids Res 19: 1179–1182.PubMedGoogle Scholar
  11. Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112: 407–421.PubMedCrossRefGoogle Scholar
  12. D’Aiuto L, Antonacci R, Marzella R, Archidiacono N, Rocchi M (1993) Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence. Genomics 18: 230–235.PubMedCrossRefGoogle Scholar
  13. Devilee P, Kievits T, Waye JS, Pearson PL, Willard HF (1988) Chromosome-specific alpha satellite DNA: isolation and mapping of a polymorphic alphoid repeat from human chromosome 10. Genomics 3: 1–7.PubMedCrossRefGoogle Scholar
  14. Donlon TA, Burns GA, Latt SA, Mulholland J, Wyman AR (1987) A chromosome 8-enriched alphoid repeat. Cytogenet Cell Genet 46: 607.Google Scholar
  15. Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91: 313–321.PubMedCrossRefGoogle Scholar
  16. Earnshaw WC, Sullivan KF, Machlin PS et al. (1987) Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol 104: 817–829.PubMedCrossRefGoogle Scholar
  17. Finelli P, Antonacci R, Marzella R, Lonoce A, Archidiacono N, Rocchi M (1996) Structural organization of multiple alphoid arrays coexisting on human chromosomes 1, 4, 5, 7, 9, 15, 18, and 19. Genomics 38: 325–330.PubMedCrossRefGoogle Scholar
  18. Gaff C, du Sart D, Kalitsis P, Iannello R, Nagy A, Choo KH (1994) A novel nuclear protein binds centromeric alpha satellite DNA. Hum Mol Genet 3: 711–716.PubMedGoogle Scholar
  19. Ge Y, Wagner MJ, Siciliano M, Wells DE (1992) Sequence, higher order repeat structure, and long-range organization of alpha satellite DNA specific to human chromosome 8. Genomics 13: 585–593.PubMedCrossRefGoogle Scholar
  20. Haaf T, Ward DC (1994) Structural analysis of alpha-satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum Mol Genet 3: 697–709.PubMedGoogle Scholar
  21. Haaf T, Mater AG, Wienberg J, Ward DC (1995) Presence and abundance of CENP-B box sequences in great ape arrays of primate-specific alpha-satellite DNA. J Mol Evol 41: 487–491.PubMedCrossRefGoogle Scholar
  22. Henikoff S (2002) Near the edge of a chromosomes ‘black hole’. Trends Genet 18: 165–167.PubMedCrossRefGoogle Scholar
  23. Hulsebos T, Schonk D, van Dalen I et al. (1988) Isolation and characterization of alphoid DNA sequences for the pericentric regions of chromosomes 4, 5, 9, and 19. Cytogenet Cell Genet 47: 144–148.PubMedCrossRefGoogle Scholar
  24. Ikeno M, Grimes B, Okazaki T et al. (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16: 431–439.PubMedCrossRefGoogle Scholar
  25. Ikeno M, Masumoto H, Okazaki T (1994) Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range alpha-satellite DNA arrays of human chromosome 21. Hum Mol Genet 3: 1245–1257.PubMedGoogle Scholar
  26. Iwahara J, Kigawa T, Kitagawa K, Masumoto H, Okazaki T, Yokoyama S (1998) A helix-turn-helix structure unit in human centromere protein B (CENP-B). EMBO J 17: 827–837.PubMedCrossRefGoogle Scholar
  27. Jorgensen AL, Bostock CJ, Bak AL (1986) Chromosome-specific subfamilies within human alphoid repetitive DNA. J Mol Biol 187: 185–196.PubMedCrossRefGoogle Scholar
  28. Kazakov AE, Shepelov VA, Tumeneva IG, Alexandrov AA, Yurov YB, Alexandrov IA (2003) Interspersed repeats are found predominantly in the ‘old’ alpha satellite families. Genomics 82: 619–627.PubMedCrossRefGoogle Scholar
  29. Kouprina N, Ebersole T, Koriabine M et al. (2003) Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes. Nucleic Acids Res 31: 922–934.PubMedCrossRefGoogle Scholar
  30. Lee C, Wevrick R, Fisher RB, Ferguson-Smith MA, Lin CC (1997) Human centromeric DNAs. Hum Genet 100: 291–304.PubMedCrossRefGoogle Scholar
  31. Looijenga LH, Oosterhuis JW, Smit VT, Wessels JW, Mollevanger P, Devilee P (1992) Alpha satellite DNAs on chromosomes 10 and 12 are both members of the dimeric suprachromosomal subfamily, but display little identity at the nucleotide sequence level. Genomics 13: 1125–1132.PubMedCrossRefGoogle Scholar
  32. Mahtani MM, Willard HF (1990) Pulsed-field gel analysis of a satellite DNA at human X chromosome centromere: high-frequency polymorphisms and array size estimate. Genomics 7: 607–613.PubMedCrossRefGoogle Scholar
  33. Maio JJ (1971) DNA strand reassociation and polyribonucleotide binding in the African green monkey, Cercopithecus aethiops. J Mol Biol 56: 579–595.PubMedCrossRefGoogle Scholar
  34. Manuelidis L, Wu JC (1978) Homology between human and simian repeated DNA. Nature 276: 92–94.PubMedCrossRefGoogle Scholar
  35. Mashkova TD, Akopian TA, Romanova LY et al. (1994) Genomic organization, sequence and polymorphism of the human chromosome 4 specific alpha satellite DNA. Gene 140: 211–217.PubMedCrossRefGoogle Scholar
  36. Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109: 1963–1973.PubMedCrossRefGoogle Scholar
  37. Masumoto H, Nakano M, Ohzeki J (2004) The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res 12: 543–556.PubMedCrossRefGoogle Scholar
  38. Masumoto H, Yoda K, Ikeno M, Kitagawa K, Muro Y, Okazaki T (1993) Properties of CENP-B and its target sequence in a satellite DNA. In Chromosome Segregation and Aneuploidy. Berlin: Springer-Verlag, pp. 31–43.Google Scholar
  39. Muro Y, Masumoto H, Yoda K, Nozaki N, Ohashi M, Okazaki T (1992) Centromere protein B assembles human centromeric alpha satellite DNA at 17-bp sequence, CENP-B box. J Cell Biol 116: 585–596.PubMedCrossRefGoogle Scholar
  40. Ohzeki J, Nakano M, Okada T, Matsumoto H (2002) CENP-B box is required for the novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159: 765–775.PubMedCrossRefGoogle Scholar
  41. Paar V, Pavin N, Rosandić M et al. (2005) ColorHOR – novel graphical algorithm for fast scan of alpha satellite higher-order repeats and HOR annotation for GenBank sequence of human genome. Bioinformatics 21: 846–852.PubMedCrossRefGoogle Scholar
  42. Pluta AF, Cooke CA, Earnshaw WC (1990) Structure of the human centromere at metaphase. Trends Biochem Sci 15: 181–185.PubMedCrossRefGoogle Scholar
  43. Pluta AF, Saitoh N, Goldberg I, Earnshaw WC (1992) Identification of a subdomain of CENP-B that is necessary and sufficient for localization to the human centromere. J Cell Biol 116: 1081–1093.PubMedCrossRefGoogle Scholar
  44. Puechberty J, Laurent AM, Gimenez S et al. (1999) Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: recombination across 5cen. Genomics 56: 274–287.PubMedCrossRefGoogle Scholar
  45. Romanova LY, Deriagin GV, Mashkova TD et al. (1996) Evidence for selection of alpha satellite DNA: the central role of CENP-B/pJα binding region. J Mol Biol 261: 334–340.PubMedCrossRefGoogle Scholar
  46. Rosandić M, Paar V, Basar I (2003a) Key-string segmentation algorithm and higher-order repeat 16mer (54 copies) in human alpha satellite DNA in chromosome 7. J Theor Biol 221: 29–37.PubMedCrossRefGoogle Scholar
  47. Rosandić M, Paar V, Glunčić M, Basar I, Pavin N (2003b) Key-string algorithm – novel approach to computational analysis of repetitive sequences in human centromeric DNA. Croat Med J 44: 386–406.PubMedGoogle Scholar
  48. Rudd MK, Willard HF (2004) Analysis of the centromeric regions of the human genome assembly. Trends Genet 20: 529–533.PubMedCrossRefGoogle Scholar
  49. Schindelhauer D, Schwarz T (2002) Evidence for a fast, intrachromosomal conversion mechanism from mapping of nucleotide variants within a homogeneous alpha-satellite DNA array. Genome Res 12: 1815–1826.PubMedCrossRefGoogle Scholar
  50. Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294: 109–115.PubMedCrossRefGoogle Scholar
  51. Tanaka Y, Nureki O, Kurumizaka H et al. (2001) Crystal structure of the CENP-B protein–DNA complex: the DNA-binding domains CENP-B induce kinks in the CENP-B box DNA. EMBO J 20: 6612–6618.PubMedCrossRefGoogle Scholar
  52. Tanaka Y, Kurumizaka H, Yokoyama S (2004) CpG methylation of the CENP-B box reduces human CENP-B binding. FEBS J 272: 282–289.CrossRefGoogle Scholar
  53. Trowell HE, Nagy A, Vissel B, Choo KH (1993) Long-range analyses of the centromeric regions of human chromosomes 13, 14 and 21: identification of a narrow domain containing two key centromeric DNA elements. Hum Mol Genet 2: 1639–1649.PubMedGoogle Scholar
  54. Tyler-Smith C, Willard HF (1993) Mammalian chromosome structure. Curr Opin Genet Dev 1993: 390–397.CrossRefGoogle Scholar
  55. Warburton PE (2004) Chromosomal dynamics of human neocentromere formation. Chromosome Res 12: 617–626.PubMedCrossRefGoogle Scholar
  56. Warburton PE, Willard HF (1996) Evolution of centromeric alpha satellite DNA: molecular organization within and between human and primate chromosomes. In Human Genome Evolution. Oxford: BIOS Scientific, pp. 121–145.Google Scholar
  57. Warburton PE, Waye JS, Willard HF (1993) Nonrandom localization of recombination events in human alpha satellite repeat unit variants: implications for higher-order structural characteristics within centromeric heterochromatin. Mol Cell Biol 13: 6520–6529.PubMedGoogle Scholar
  58. Waye JS, Willard HF (1985) Chromosome-specific alpha satellite DNA: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human X chromosome. Nucleic Acids Res 13: 2731–2743.PubMedGoogle Scholar
  59. Waye JS, Willard HF (1986) Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome. Mol Cell Biol 6: 3156–3165.PubMedGoogle Scholar
  60. Waye JS, Willard HF (1987) Nucleotide sequence heterogeneity of alpha satellite DNA: a survey of alphoid sequences from different human chromosomes. Nucleic Acids Res 15: 7549–7569.PubMedGoogle Scholar
  61. Waye JS, Creeper LA, Willard HF (1987b) Organization and evolution of alpha satellite DNA from human chromosome 11. Chromosoma 95: 182–188.PubMedCrossRefGoogle Scholar
  62. Waye JS, Durfy SJ, Pinkel D et al. (1987c) Chromosome-specific alpha satellite DNA from human chromosome 1: hierarchical structure and genomic organization of a polymorphic domain spanning several hundred kilobase pairs of centromeric DNA. Genomics 1: 43–51.PubMedCrossRefGoogle Scholar
  63. Waye JS, England SB, Willard HF (1987a) Genomic organization of alpha satellite DNA on human chromosome 7: evidence for two distinct alphoid domains on a single chromosome. Mol Cell Biol 7: 349–356.PubMedGoogle Scholar
  64. Wevrick R, Willard HF (1989) Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci USA 86: 9394–9398.PubMedCrossRefGoogle Scholar
  65. Wevrick R, Willard HF (1991) Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. Nucleic Acids Res 19: 2295–2301.PubMedGoogle Scholar
  66. Wevrick R, Willard VP, Willard HF (1992) Structure of DNA near long tandem arrays of alpha satellite DNA at the centromere of human chromosome 7. Genomics 14: 912–923.PubMedCrossRefGoogle Scholar
  67. Willard HF (1985) Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet 37: 524–532.PubMedGoogle Scholar
  68. Willard HF (1991) Evolution of alpha satellite. Curr Opin Genet Dev 1: 509–514.PubMedCrossRefGoogle Scholar
  69. Willard HF, Waye JS (1987) Chromosome-specific arrays of human alpha satellite DNA: analysis of sequence divergence within and between chromosomal arrays and evidence for an ancestral pentameric repeat. J Mol Evol 25: 207–214.PubMedCrossRefGoogle Scholar
  70. Willard HF, Greig GM, Powers VE, Waye JS (1987) Molecular organization and haplotype analysis of centromeric DNA from human chromosome 17: implications for linkage in neurofibromatosis. Genomics 1: 368–373.PubMedCrossRefGoogle Scholar
  71. Willard HF, Waye JS, Skolnick MH, Schwartz CE, Powers VE, England SB (1986) Detection of restriction fragment polymorphisms at the centromeres of human chromosomes by using chromosome-specific alpha satellite DNA probes: implications for development of centromere-based genetic linkage maps. Proc Natl Acad Sci USA 83: 5611–5615.PubMedCrossRefGoogle Scholar
  72. Wu JS, Kidd KK (1990) Extensive sequence polymorphisms associated with chromosome 10 alpha satellite DNA and its close linkage to markers from the pericentromeric region. Hum Genet 84: 279–282.PubMedCrossRefGoogle Scholar
  73. Yang TP, Hansen SK, Oishi KK, Ryder OA, Hamkalo BA (1982) Characterization of a cloned repetitive DNA sequence concentrated on the human X chromosome. Proc Natl Acad Sci USA 79: 6593–6597.PubMedCrossRefGoogle Scholar
  74. Yoda K, Okazaki T (1997) Site-specific base deletions in human alpha-satellite monomer DNAs are associated with regularly distributed CENP-B boxes. Chromosome Res 5: 207–211.PubMedCrossRefGoogle Scholar
  75. Yoda K, Ando S, Okuda A, Kikuchi A, Okazaki T (1998) In vitro assembly of the CENP-B/alpha satellite DNA/core histone complex: CENP-B causes nucleosome positioning. Genes Cells 3: 533–548.PubMedCrossRefGoogle Scholar
  76. Yoda K, Nakamura T, Masumoto H et al. (1996) Centromere protein B of African green monkey cells: gene structure, cellular expression and centromeric localization. Mol Cell Biol 16: 5169–5177.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Marija Rosandić
    • 1
  • Vladimir Paar
    • 2
  • Ivan Basar
    • 2
  • Matko Glunčić
    • 2
  • Nenad Pavin
    • 2
  • Ivan Pilaš
    • 3
  1. 1.Department of Internal MedicineUniversity Hospital Rebro, University of ZagrebZagrebCroatia
  2. 2.Faculty of ScienceUniversity of ZagrebZagrebCroatia
  3. 3.Forest Research Institute, Department of Ecology and SilvicultureJastrebarskoCroatia

Personalised recommendations