Chromosome Research

, Volume 14, Issue 4, pp 451–464 | Cite as

Drosophila under the lens: imaging from chromosomes to whole embryos

  • Cornelia Fritsch
  • Ginette Ploeger
  • Donna J. Arndt-JovinEmail author


Microscopy has been a very powerful tool for Drosophila research since its inception, proving to be essential for the evaluation of mutant phenotypes, the understanding of cellular and tissue physiology, and the illumination of complex biological questions. In this article we review the breadth of this field, making note of some of the seminal papers. We expand on the use of microscopy to study questions related to gene locus and nuclear architecture, presenting new data using fluorescence in-situ hybridization techniques that demonstrate the flexibility of Drosophila chromosomes. Finally, we review the burgeoning use of fluorescence in-vivo imaging methods to yield quantitative information about cellular processes.

Key words

chromosome Drosophila fluorescence microscopy FRAP GFP imaginal disc in-situ hybridization lacO arrays 



We thank Dr. G. Ficz for providing the images of Pc-GFP and Ph-GFP expression in Drosophila embryos and larval tissues as well as for the FRAP curves presented here. We thank both Dr. Ficz and Dr. J. Post for helpful discussions.

Supplementary material


  1. Ahmad K, Henikoff S (2001) Centromeres are specialized replication domains in heterochromatin. J Cell Biol 153: 101–110.PubMedCrossRefGoogle Scholar
  2. Amrein H, Axel R (1997) Genes expressed in neurons of adult male Drosophila. Cell 88: 459–469.PubMedCrossRefGoogle Scholar
  3. Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306: 1370–1373.PubMedCrossRefGoogle Scholar
  4. Arnoldus EPJ, Peters ACB, Bots GTAM et al. (1989) Somatic pairing of chromosome 1 centromeres in interphase nuclei of human cerebellum. Hum Genet 83: 231–234.PubMedCrossRefGoogle Scholar
  5. Arnoldus EPJ, Noordermeer IA, Peters ACB et al. (1991) Interphase cytogenetics reveals somatic pairing of chromosome 17 centromeres in normal human brain tissue, but no trisomy 7 or sex-chromosome loss. Cytogenet Cell Genet 56: 214–216.PubMedGoogle Scholar
  6. Bantignies F, Grimaud C, Lavrov S et al. (2003) Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev 17: 2406–2420.PubMedCrossRefGoogle Scholar
  7. Belmont A (2003) Dynamics of chromatin, proteins, and bodies within the cell nucleus. Curr Opin Cell Biol 15: 304–310.PubMedCrossRefGoogle Scholar
  8. Beuchle D, Struhl G, Muller J (2001) Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 128: 993–1004.PubMedGoogle Scholar
  9. Bornfleth H, Edelmann P, Zink D et al. (1999) Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys J 77: 2871–2886.PubMedCrossRefGoogle Scholar
  10. Bossing T, Technau GM (1994) The fate of the cns midline progenitors in Drosophila as revealed by a new method for single cell labelling. Development 120: 1895–1906.PubMedGoogle Scholar
  11. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401–415.PubMedGoogle Scholar
  12. Bratu DP, Cha BJ, Mhlanga MM et al. (2003) Visualizing the distribution and transport of mRNAs in living cells. Proc Natl Acad Sci USA 100: 13308–13313.PubMedCrossRefGoogle Scholar
  13. Bridges C (1935) Salivary chromosome maps: with a key to the banding of the chromosomes of Drosophila melanogaster. 26: 60–64.Google Scholar
  14. Brown KE, Baxter J, Graf D et al. (1999) Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 3: 207–217.PubMedCrossRefGoogle Scholar
  15. Buchenau P, Saumweber H, Arndt-Jovin DJ (1993) Consequences of topoisomerase II inhibition in early embryogenesis of Drosophila revealed by in vivo confocal laser scanning microscopy. J Cell Sci 104: 1175–1185.PubMedGoogle Scholar
  16. Buchenau P, Saumweber H, Arndt-Jovin DJ (1997) The dynamic nuclear redistribution of an hnRNP K-homologous protein during Drosophila embryo development and heat shock. Flexibility of transcription sites in vivo. J Cell Biol 137: 291–303.PubMedCrossRefGoogle Scholar
  17. Casso D, Ramirez-Weber FA, Kornberg TB (1999) GFP-tagged balancer chromosomes for Drosophila melanogaster. Mech Dev 88: 229–232.PubMedCrossRefGoogle Scholar
  18. Chalfie M, Tu Y, Euskirchen G et al. (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802–805.PubMedGoogle Scholar
  19. Chen S, Corces VG (2001) The gypsy insulator of Drosophila affects chromatin structure in a directional manner. Genetics 159: 1649–1658.PubMedGoogle Scholar
  20. Cheutin T, McNairn AJ, Jenuwein T et al. (2003) Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299: 721–725.PubMedCrossRefGoogle Scholar
  21. Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12: 439–445.PubMedCrossRefGoogle Scholar
  22. Clarkson M, Saint R (1999) A His2AvDGFP fusion gene complements a lethal His2AvD mutant allele and provides an in vivo marker for Drosophila chromosome behavior. DNA Cell Biol 18: 457–462.PubMedCrossRefGoogle Scholar
  23. Csink A, Henikoff S (1996) Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 381: 529–531.PubMedCrossRefGoogle Scholar
  24. Csink AK, Henikoff S (1998) Large-scale chromosomal movements during interphase progression in Drosophila. J Cell Biol 143: 13–22.PubMedCrossRefGoogle Scholar
  25. Dernburg AF, Broman KW, Fung JC et al. (1996) Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85: 745–759.PubMedCrossRefGoogle Scholar
  26. Dietzel S, Niemann H, Bruckner B et al. (1999) The nuclear distribution of Polycomb during Drosophila melanogaster development shown with a GFP fusion protein. Chromosoma 108: 83–94.PubMedCrossRefGoogle Scholar
  27. Drysdale RA, Crosby MA (2005) FlyBase: genes and gene models. Nucleic Acids Res 33: D390–D395.PubMedCrossRefGoogle Scholar
  28. Ficz G, Heintzmann R, Arndt-Jovin DJ (2005) Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132: 3963–3976.PubMedCrossRefGoogle Scholar
  29. Foe V (1989) Mitotic domains reveal early commitment of cells in Drosophila embryos. Development 107: 1–22.PubMedGoogle Scholar
  30. Fung JC, Marshall WF, Dernburg A et al. (1998) Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations. J Cell Biol 141: 5–20.PubMedCrossRefGoogle Scholar
  31. Furlong EE, Andersen EC, Null B et al. (2001a) Patterns of gene expression during Drosophila mesoderm development. Science 293: 1629–1633.PubMedCrossRefGoogle Scholar
  32. Furlong EE, Profitt D, Scott MP (2001b) Automated sorting of live transgenic embryos. Nat Biotechnol 19: 153–156.PubMedCrossRefGoogle Scholar
  33. Gemkow MJ, Verveer PJ, Arndt-Jovin DJ (1998) Homologous association of the Bithorax-Complex during embryogenesis: consequences for transvection in Drosophila melanogaster. Development 125: 4541–4552.PubMedGoogle Scholar
  34. Georgiev PG, Corces VG (1995) The SU(HW) protein bound to gypsy sequences in one chromosome can repress enhancer promoter interactions in the paired gene located In the other homolog. Proc Natl Acad Sci USA 92: 5184–5188.PubMedCrossRefGoogle Scholar
  35. Gerasimova TI, Byrd K, Corces VG (2000) A chromatin insulator determines the nuclear localization of DNA. Mol Cell 6: 1025–1035.PubMedCrossRefGoogle Scholar
  36. Gerlitz O, Nellen D, Ottiger M, Basler K (2002) A screen for genes expressed in Drosophila imaginal discs. Int J Dev Biol 46: 173–176.PubMedGoogle Scholar
  37. Geyer P (1997) The role of insulator elements in defining domains of gene expression. Curr Opin Genet Dev 7: 242–248.PubMedCrossRefGoogle Scholar
  38. Grimaud C, Nègre N, Cavalli G (2006) From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res 14: 00–00 [refers to CHRO 1069].Google Scholar
  39. Halfon MS, Gisselbrecht S, Lu J et al. (2002) New fluorescent protein reporters for use with the Drosophila Gal4 expression system and for vital detection of balancer chromosomes. Genesis 34: 135–138.PubMedCrossRefGoogle Scholar
  40. Hartl D, Nurminsky D, Jones R, Lozovskaya E (1994) Genome structure and evolution in Drosophila: applications of the framework P1 map. Proc Natl Acad Sci USA 91: 6824–6829.PubMedCrossRefGoogle Scholar
  41. Hediger F, Taddei A, Neumann FR, Gasser SM (2004) Methods for visualizing chromatin dynamics in living yeast. Methods Enzymol 375: 345–365.PubMedCrossRefGoogle Scholar
  42. Heun P, Laroche T, Raghuraman MK, Gasser SM (2001a) The positioning and dynamics of origins of replication in the budding yeast nucleus. J Cell Biol 152: 385–400.PubMedCrossRefGoogle Scholar
  43. Heun P, Laroche T, Shimada K et al. (2001b) Chromosome dynamics in the yeast interphase nucleus. Science 294: 2181–2186.PubMedCrossRefGoogle Scholar
  44. Houtsmuller AB, Vermeulen W (2001) Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching. Histochem Cell Biol 115: 13–21.PubMedGoogle Scholar
  45. Kellogg DR, Mitchison TJ, Alberts BM (1988) Behaviour of microtubules and actin filaments in living Drosophila embryos. Development 103: 675–686.PubMedGoogle Scholar
  46. Kimura H (2005) Histone dynamics in living cells revealed by photobleaching. DNA Repair (Amst) 4: 939–950.CrossRefGoogle Scholar
  47. Kosman D, Small S, Reinitz J (1998) Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins. Dev Genes Evol 208: 290–294.PubMedCrossRefGoogle Scholar
  48. Kosman D, Reinitz J, Sharp D (1999) Automated assay of gene expression at cellular resolution. In Altman R, Dunker K, Hunter L, Klein T, eds., Proceedings of the 1998 Pacific Symposium on Biocomputing, pp. 6–17.Google Scholar
  49. Kraut R, Zinn K (2004) Roundabout 2 regulates migration of sensory neurons by signaling in trans. Curr Biol 14: 1319–1329.PubMedCrossRefGoogle Scholar
  50. Levi V, Ruan Q, Plutz M et al. (2005) Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys J 89: 4275–4285.PubMedCrossRefGoogle Scholar
  51. Lifton R, Goldberg M, Karp R, Hogness D (1978) The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications. CSH Symp Quant Biol 42: 1047–1051.Google Scholar
  52. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300: 87–91.PubMedCrossRefGoogle Scholar
  53. Luschnig S, Moussian B, Krauss J et al. (2004) An F1 genetic screen for maternal-effect mutations affecting embryonic pattern formation in Drosophila melanogaster. Genetics 167: 325–342.PubMedCrossRefGoogle Scholar
  54. Marshall WF, Straight A, Marko JF et al. (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7: 930–939.PubMedCrossRefGoogle Scholar
  55. Minden JS, Agard DA, Sedat JW, Alberts BM (1989) Direct cell lineage analysis in Drosophila melanogaster by time-lapse, three-dimensional optical microscopy of living embryos. J Cell Biol 109: 505–516.PubMedCrossRefGoogle Scholar
  56. Miyawaki A (2006) New fluorescent probes and new perspective in bioscience. SPIE 6089: 18.Google Scholar
  57. Murray MJ, Merritt DJ, Brand AH, Whitington PM (1998) In vivo dynamics of axon pathfinding in the Drosophila CNS: a time-lapse study of an identified motorneuron. J Neurobiol 37: 607–621.PubMedCrossRefGoogle Scholar
  58. Painter T (1934) Salivary chromosomes and the attack on the gene. J Hered 25: 465–476.Google Scholar
  59. Phair RD, Misteli T (2001) Kinetic modelling approaches to in vivo imaging. Nature Rev Mol Cell Biol 2: 898–907.CrossRefGoogle Scholar
  60. Post JN, Lidke KA, Rieger B, Arndt-Jovin DJ (2005) One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. FEBS Lett 579: 325–330.PubMedCrossRefGoogle Scholar
  61. Robinett CC, Straight A, Li G et al. (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135: 1685–1700.PubMedCrossRefGoogle Scholar
  62. Saint R, Clarkson M (2000) Pictures in cell biology. A functional marker for Drosophila chromosomes in vivo. Trends Cell Biol 10: 553.PubMedCrossRefGoogle Scholar
  63. Schmid A, Chiba A, Doe CQ (1999) Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 126: 4653–4689.PubMedGoogle Scholar
  64. Shao Z, Raible F, Mollaaghababa R et al. (1999) Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98: 37–46.PubMedCrossRefGoogle Scholar
  65. Sigrist CJ, Pirrotta V (1997) Chromatin insulator elements block the silencing of a target gene by the Drosophila polycomb response element (PRE) but allow trans interactions between PREs on different chromosomes. Genetics 147: 209–221.PubMedGoogle Scholar
  66. Spradling A, Penman S, Pardue ML (1975) Analysis of Drosophila messenger RNA by in-situ hybridization sequences transcribed in normal and heat shocked cultured cells. Cell 4: 395–404.PubMedCrossRefGoogle Scholar
  67. Sprague BL, Pego RL, Stavreva DA, McNally JG (2004) Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J 86: 3473–3495.PubMedCrossRefGoogle Scholar
  68. Straight AF, Belmont AS, Robinett CC, Murray AW (1996) GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr Biol 6: 1599–1608.PubMedCrossRefGoogle Scholar
  69. Thakar R, Csink AK (2005) Changing chromatin dynamics and nuclear organization during differentiation in Drosophila larval tissue. J Cell Sci 118: 951–960.PubMedCrossRefGoogle Scholar
  70. Tumbar T, Sudlow G, Belmont AS (1999) Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol 145: 1341–1354.PubMedCrossRefGoogle Scholar
  71. Vazquez J, Belmont AS, Sedat JW (2001) Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr Biol 11: 1227–1239.PubMedCrossRefGoogle Scholar
  72. Volpi EV, Chevret E, Jones T et al. (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113: 1565–1576.PubMedGoogle Scholar
  73. Wensink PC, Finnegan D, Donelson J, Hogness D (1974) A system for mapping DNA sequences in the chromosomes of Drosophila melanogaster. Cell 3: 315–325.PubMedCrossRefGoogle Scholar
  74. White J, Stelzer E (1999) Photobleaching GFP reveals protein dynamics inside live cells. Trends Cell Biol 9: 61–65.PubMedCrossRefGoogle Scholar
  75. Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117: 1223–1237.PubMedGoogle Scholar
  76. Yeh E, Gustafson K, Boulianne GL (1995) Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci USA 92: 7036–7040.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Cornelia Fritsch
    • 1
  • Ginette Ploeger
    • 1
    • 2
  • Donna J. Arndt-Jovin
    • 1
    Email author
  1. 1.Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
  2. 2.Molecular Cytology, Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations