Chromosome Research

, Volume 14, Issue 4, pp 377–392 | Cite as

Histone modification and the control of heterochromatic gene silencing in Drosophila

  • Anja Ebert
  • Sandro Lein
  • Gunnar Schotta
  • Gunter Reuter


Covalent modifications of histones index structurally and functionally distinct chromatin domains in eukaryotic nuclei. Drosophila with its polytene chromosomes and developed genetics allows detailed cytological as well as functional analysis of epigenetic histone modifications involved in the control of gene expression pattern during development. All H3K9 mono- and dimethylation together with all H3K27 methylation states and H4K20 trimethylation are predominant marks of pericentric heterochromatin. In euchromatin, bands and interbands are differentially indexed. H3K4 and H3K36 methylation together with H3S10 phosphorylation are predominant marks of interband regions whereas in bands different H3K27 and H4K20 methylation states are combined with acetylation of H3K9 and H3K14. Genetic dissection of heterochromatic gene silencing in position-effect variegation (PEV) by Su(var) and E(var) mutations allowed identification and functional analysis of key factors controlling the formation of heterochromatin. SU(VAR)3-9 association with heterochromatic sequences followed by H3K9 methylation initiates the establishment of repressive SU(VAR)3-9/HP1/SU(VAR)3-7 protein complexes. Differential enzymatic activities of novel point mutants demonstrate that the silencing potential of SU(VAR)3-9 is mainly determined by the kinetic properties of the HMTase reaction. In Su(var)3-9 ptn a significantly enhanced enzymatic activity results in H3K9 hypermethylation, enhanced gene silencing and extensive chromatin compaction. Mutations in factors controlling active histone modification marks revealed the dynamic balance between euchromatin and heterochromatin. Further analysis and definition of Su(var) and E(var) genes in Drosophila will increase our understanding of the molecular hierarchy of processes controlling higher-order structures in chromatin.

Key words

gene silencing heterochromatin histone modification position-effect variegation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aagaard L, Laible G, Selenko P et al. (1999) Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins that complex with the heterochromatin component M31. EMBO J 18: 1923–1938.PubMedCrossRefGoogle Scholar
  2. Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5: 367–375.PubMedCrossRefGoogle Scholar
  3. Allshire RC, Nimmo ER, Ekwall K, Javerzat J-P, Crabston G (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9: 218–233.PubMedGoogle Scholar
  4. Armstrong JA, Papoulas O, Daubresse G et al. (2002) The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J 21: 5245–5254.PubMedCrossRefGoogle Scholar
  5. Baumbusch LO, Thorstensen T, Krauss V et al. (2001) The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionary conserved classes. Nucleic Acids Res 29: 4319–4333.PubMedCrossRefGoogle Scholar
  6. Beisel C, Imhof A, Greene J, Kremmer E, Sauer F (2002) Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419: 857–862.PubMedCrossRefGoogle Scholar
  7. Belyaeva ES, Zhimulev IF (1991) Cytogenetic and molecular aspects of position effect variegation in Drosophila III. Continuous and discontinuous compaction of chromosomal material is a result of position effect variegation. Chromosoma 100: 453–466.PubMedCrossRefGoogle Scholar
  8. Belyaeva ES, Demakova OV, Umbetova GH, Zhimulev IF (1993) Cytogenetic and molecular aspects of position-effect variegation in Drosophila melanogaster. V. Heterochromatin-associated protein HP1 appears in euchromatic chromosomal regions that are inactivated as a result of position-effect variegation. Chromosoma 102: 53–590.CrossRefGoogle Scholar
  9. Birve A, Sengupta AK, Beuchle D et al. (2001) Su(z)12, a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development 128: 3371–3379.PubMedGoogle Scholar
  10. Byrd KN, Shearn A (2003) ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc Natl Acad Sci USA 100: 11535–11540.PubMedCrossRefGoogle Scholar
  11. Cam H, Grewal SIS (2004) RNA interference and epigenetic control of heterochromatin assembly in fission yeast. Cold Spring Habor Symp Quant Biol 69: 419–427.CrossRefGoogle Scholar
  12. Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5: 905–915.PubMedCrossRefGoogle Scholar
  13. Cleard F, Spierer P (2001) Position-effect variegation in Drosophila: the modifier Su(var)3-7 is a modular DNA-binding protein. EMBO Rep 21: 1095–1100.CrossRefGoogle Scholar
  14. Cleard F, Delattre M, Spierer P (1997) SU(VAR)3-7 a Drosophila heterochromatin-associated protein and companion of HP1 in the genomic silencing of position-effect variegation. EMBO J 16: 5280–5288.PubMedCrossRefGoogle Scholar
  15. Czermin B, Schotta G, Hülsmann BB et al. (2001) Physical and functional interaction of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep 2: 915–919.PubMedCrossRefGoogle Scholar
  16. Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111: 185–196.PubMedCrossRefGoogle Scholar
  17. Delattre M, Spierer A, Tonka C-H, Spierer P (2000) The genomic silencing of position-effect variegation in Drosophila melanogaster: Interaction between the heterochromatin-associated proteins Su(var)3-7 and HP1. J Cell Sci 113: 4253–4261.PubMedGoogle Scholar
  18. Demakov SA, Semeshin VF, Zhimulev IF (1993) Cloning and moleculargenetic analysis of Drosophila melanogaster interband DNA. Mol Gen Genet 238: 437–443.PubMedCrossRefGoogle Scholar
  19. Demerec M, Slizynska H (1937) Mottled white 258-18 of Drosophila melanogaster. Genetics 22: 641–649.PubMedGoogle Scholar
  20. Dorn R, Szidonya J, Korge G et al. (1993). P Transposon-induced dominant enhancer mutations of position-effect variegation in Drosophila melanogaster. Genetics 133: 279–290.PubMedGoogle Scholar
  21. Ebert A, Schotta G, Lein S et al. (2004) Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev 18: 2973–2983.PubMedCrossRefGoogle Scholar
  22. Egel R, Willer M, Neisen O (1989) Unblocking of meiotic crossing-over between the silent mating-type cassettes of fission yeast, conditioned by the recessive, pleiotropic mutant rik1. Curr Genet 15: 407–410.CrossRefGoogle Scholar
  23. Eggert H, Gortchakov A, Saumweber H (2004) Identification of the Drosophila interband-specific protein Z4 as a DNA-binding zinc-finger protein determining chromosomal structure. J Cell Sci 15: 4253–4264.CrossRefGoogle Scholar
  24. Eissenberg JC, Elgin SC (2000) The HP1 protein family: getting a grip on chromatin. Curr Opin Genet Dev 10: 204–210.PubMedCrossRefGoogle Scholar
  25. Ekwall K, Ruusala T (1994) Mutations in rik1, clr2, clr3, and clr4 genes asymmetrically derepress the silent mating-type loci in fission yeast. Genetics 136: 53–64.PubMedGoogle Scholar
  26. Feng Q, Wang H, Ng HH et al. (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12: 1052–1058.PubMedCrossRefGoogle Scholar
  27. Fischer A, Hofmann I, Naumann K, Reuter G (2006) Heterochromatin proteins and the control of heterochromatic gene silencing in Arabidopsis. J Plant Physiol 163: 358–368.PubMedCrossRefGoogle Scholar
  28. Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15: 172–183.PubMedCrossRefGoogle Scholar
  29. Freitag M, Hickey PC, Khlafallah TK, Read ND, Selker EU (2004) HP1 is essential for DNA methylation in Neurospora. Mol Cell 13: 427–434.PubMedCrossRefGoogle Scholar
  30. Garcia-Cao M, O'Sullivan R, Peters AHFM, Jenuwein T, Blasco MA (2003) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36: 94–99.PubMedCrossRefGoogle Scholar
  31. Greil F, van der Kraan I, Delrow J et al. (2003) Distinct HP1 and Su(var)3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev 17: 2825–2838.PubMedCrossRefGoogle Scholar
  32. Hall IM, Noma K, Grewal SIS (2003) RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc Natl Acad Sci USA 100: 193–198.PubMedCrossRefGoogle Scholar
  33. Hochheimer A, Zhou S, Zheng S, Holmes MC, Tjian R (2002) TRF2 associates with DREF and directs promoter-selective gene expression in Drosophila. Nature 420: 439–445.PubMedCrossRefGoogle Scholar
  34. Ivanova AV, Bonaduce MJ, Ivanov SV, Klar AJS (1998) The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nature Genet 19: 192–195.PubMedCrossRefGoogle Scholar
  35. Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPONITE histone H3 methyltransferase. Nature 416: 556–560.PubMedCrossRefGoogle Scholar
  36. Jackson JP, Johnson L, Jasencakova Z et al. (2004) Dimethylation of histone H3K9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112: 308–315.PubMedCrossRefGoogle Scholar
  37. Jacobs AS, Harp JM, Devarakonda S, Kim Y, Rastinejad F, Khoasanizadeh S (2002) The active site of the SET domain is constructed on a knot. Nature Struct Biol 9: 833–838.PubMedGoogle Scholar
  38. Jaquet Y, Delattre M, Montoya-Burgos J, Spierer A, Spierer P (2006) Conserved domains control heterochromatin localization and silencing properties of SU(VAR)3-7. Chromosoma (In press).Google Scholar
  39. Jaquet Y, Delattre M, Spierer A, Spierer P (2002) Functional dissection of the Drosophila modifier of variegation Su(var)3-7. Development 129: 3975–3982.PubMedGoogle Scholar
  40. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074–1080.PubMedCrossRefGoogle Scholar
  41. Jia S, Noma K, Grewal SIS (2004) RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304: 1971–1976.PubMedCrossRefGoogle Scholar
  42. Jones RS, Gelbart WM (1993) The Drosophila Polycomb-group gene Enhancer of zeste contains a region with seqeunce similarity to trithorax. Mol Cell Biol 13: 6357–6366.PubMedGoogle Scholar
  43. Kaplan CD, Morris JR, Wu C, Winston F (2000) Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev 14: 2623–2634.PubMedCrossRefGoogle Scholar
  44. Karachentsev D, Sarma K, Reinberg D, Steward R (2005) PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev 19: 431–435.PubMedCrossRefGoogle Scholar
  45. Katsani KR, Arredondo JJ, Kal AJ, Verrijzer CP (2001) A homeotic mutation in the trithorax SET domain impedes histone binding. Genes Dev 15: 2197–2202.PubMedCrossRefGoogle Scholar
  46. Krauss V, Reuter G (2000) Two genes become one: the genes encoding heterochromatin protein SU(VAR)3-9 and translation initiation factor subunit eIF-2γ are joined to a dicistronic unit in holometabloic insects. Genetics 156: 1157–1167.PubMedGoogle Scholar
  47. Krauss V, Fassl A, Fiebig P, Patties I, Sass H (2006) The evolution of the histone Methyltransferase gene Su(var)3-9 includes a fusion with and a re-fission from a functionally unrelated gene. BMC Evol Biol 6 (In press).Google Scholar
  48. Kuhfittig S, Szabad J, Schotta G, Hoffmann J, Máthé E, Reuter G (2001) Pitkin D a novel gain-of-function enhancer of position-effect variegation affects chromatin regulation during oogenesis and early embryogenesis in Drosophila. Genetics 157: 1227–1244.PubMedGoogle Scholar
  49. Lachner M, O'Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116: 2117–2124.PubMedCrossRefGoogle Scholar
  50. Laible G, Wolf A, Dorn R et al. (1997). Mammalian homologs of Enhancer of zeste mediate position-effect variegation in Drosophila and restore telomeric silencing in S. cerevisiae. EMBO J 16: 3219–3232.PubMedCrossRefGoogle Scholar
  51. Lindroth MA, Shultis D, Jasencakova Z et al. (2004) Dual histone H3 methylation marks at lysine 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J 23: 4146–4155.CrossRefGoogle Scholar
  52. Lorentz AK, Ostermann K, Fleck O, Schmidt H (1994) Switching gene swi6, involved in repression of silent mating-type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophila and mammals. Gene 143: 323–330.CrossRefGoogle Scholar
  53. Min J, Zhang X, Cheng X, Grewal SS, Xu R-M (2002) Structure of the SET domain histine lysine methyltransferase Clr4. Nature Struct Biol 9: 828–832.PubMedGoogle Scholar
  54. Miotto B, Sagnier T, Berenger H, Bohmann D, Pradel J, Graba Y (2006) Chameau HAT and Drpd3 HDAC function as antagonistic cofactors of JNK/AP-1-dependent transcription during Drosophila metamorphosis. Genes Dev 20: 101–112.PubMedCrossRefGoogle Scholar
  55. Mottus R, Sobels RE, Grigliatti TA (2000) Mutational analysis of a histone deacetylase in Drosophila melanogaster: missence mutations suppress gene silencing associated with position effect variegation. Genetics 154: 657–668.PubMedGoogle Scholar
  56. Müller J, Hart CM, Francis NJ et al. (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111: 197–208.PubMedCrossRefGoogle Scholar
  57. Nakamura T, Mori T, Tada S, Krajewski W et al. (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10: 1119–1128.PubMedCrossRefGoogle Scholar
  58. Nakayama J, Rice JD, Stahl BD, Allis CD, Grenwal SIS (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113.PubMedCrossRefGoogle Scholar
  59. Naumann K, Fischer A, Hofmann I et al. (2005) Pivotal role of AtSUVH2 in control of heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J 24: 1418–1429.PubMedCrossRefGoogle Scholar
  60. Nishioka K, Rice JC, Sarma K et al. (2002) PR-Set7 Is a Nucleosome-Specific Methyltransferase that Modifies Lysine 20 of Histone H4 and Is Associated with Silent Chromatin. Mol Cell 9: 1201–1213.PubMedCrossRefGoogle Scholar
  61. Noma K, Grewal SIS (2002) Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc Natl Acad Sci USA 99: 16438–16445.PubMedCrossRefGoogle Scholar
  62. O'Carroll D, Scherthan H, Peters AH et al. (2000) Isolation and characterization of Suvh39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol Cell Biol 20: 9423–9433.PubMedCrossRefGoogle Scholar
  63. Pal-Bhadra M, Leibovitch BA, Gandhi SG et al. (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303: 669–672.PubMedCrossRefGoogle Scholar
  64. Peters AHFM, O’Carroll D, Scherthan H et al. (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107: 323–337.PubMedCrossRefGoogle Scholar
  65. Peters AHFM, Kubicek S, Mechtler K et al. (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12: 1577–1589.PubMedCrossRefGoogle Scholar
  66. Prokofyeva-Belgovskaya AA (1947) Heterochromatization as a change of chromosome cycle. J Genet 48: 80–98.CrossRefGoogle Scholar
  67. Rea S, Eisenhaber F, O’Carroll D, Stahl BD et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593–599.PubMedCrossRefGoogle Scholar
  68. Reuter G, Werner W, Hoffman HJ (1982) Mutants affecting position effect heterochromatinization in Drosophila melanogaster. Chromosoma 85: 539–551.PubMedCrossRefGoogle Scholar
  69. Reuter G, Giarre N, Farah J, Gausz J, Spierer A, Spierer P (1990) Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein. Nature 344: 219–223.PubMedCrossRefGoogle Scholar
  70. Rice JC, Briggs SD, Ueberheide B et al. (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12: 1591–1598.PubMedCrossRefGoogle Scholar
  71. Roguev A, Schaft D, Shevchenko A et al. (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20: 7137–7148.PubMedCrossRefGoogle Scholar
  72. Sanders SL, Portoso M, Mata J, Bähler J, Allshire RC, Kouzarides T (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119: 603–614.PubMedCrossRefGoogle Scholar
  73. Santos-Rosa H, Schneider R, Bannister AJ et al. (2002) Active genes are trimethylated at K4 of histone H3. Nature 419: 407–411.PubMedCrossRefGoogle Scholar
  74. Schotta G, Ebert A, Krauss V et al. (2002) Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21: 1121–1131.PubMedCrossRefGoogle Scholar
  75. Schotta G, Ebert A, Dorn R, Reuter G (2003a) Position-effect variegation and the genetic dissection of chromatin regulation in Drosophila. Sem Cell Dev Biol 14: 67–75.CrossRefGoogle Scholar
  76. Schotta G, Ebert A, Reuter G (2003b) SU(VAR)3-9 a conserved key function in heterochromatic gene silencing. Genetica 117: 149–158.PubMedCrossRefGoogle Scholar
  77. Schotta G, Lachner M, Sarma K et al. (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18: 1251–1262.PubMedCrossRefGoogle Scholar
  78. Schultz J (1936) Variegation in Drosophila and the inert chromosome regions. Proc Natl Acad Sci USA 22: 27–33.PubMedCrossRefGoogle Scholar
  79. Sedkov Y, Cho E, Petruk S et al. (2003) Methylation at lysine 4 of histone H3 in ecdysone-dependent development of Drosophila. Nature 426: 78–83.PubMedCrossRefGoogle Scholar
  80. Seeger K, Lein S, Reuter G, Berger S (2005) STD-measurements with SU(VAR)3-9 and S-adenosyl-l-methionine. Biochemistry 44: 6208–6213.PubMedCrossRefGoogle Scholar
  81. Semeshin VF, Demakov SA, Zhimulev IF (1989) Characteristics of structures of Drosophila polytene chromosomes formed by transposable DNA fragments. Genetica (Russ) 25: 1968–1978.Google Scholar
  82. Shanower GA, Muller M, Blanton JL, Honti V, Gyurkovics H, Schedl P (2005) Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase. Genetics 169: 173–184.PubMedCrossRefGoogle Scholar
  83. Shi Y, Lan F, Matson C et al. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119: 941–953.PubMedCrossRefGoogle Scholar
  84. Smith ER, Pannuti A, Gu W et al. (2000) The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 20: 312–318.PubMedCrossRefGoogle Scholar
  85. Spierer A, Seum C, Delattre M, Spierer P (2005) Loss of the modifier of variegation Su(var)3-7 or HP1 impacts male X polytene chromosome morphology and dosage compensation. J Cell Sci 118: 5047–5057.PubMedCrossRefGoogle Scholar
  86. Stokes DG, Tartof KD, Perry RP (1996) CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc Natl Acad Sci USA 93: 7137–7142.PubMedCrossRefGoogle Scholar
  87. Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414: 277–283.PubMedCrossRefGoogle Scholar
  88. Thon G, Klar AJS (1992) The clr1 locus regulates the expression of the cryptic mating-type loci of fission yeast. Genetics 131: 287–296.PubMedGoogle Scholar
  89. Thon G, Verhein-Hansen J (2000) Four-chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics 155: 551–568.PubMedGoogle Scholar
  90. Thon G, Cohen A, Klar AJS (1994) Three additional linkage groups that repress transcription and meiotic recombination in the mating-type region of Schizosaccharomyces pombe. Genetics 138: 29–38.PubMedGoogle Scholar
  91. Trievel RC, Beach BM, Dirk LMA, Houtz RL, Hurley JH (2002) Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111: 91–103.PubMedCrossRefGoogle Scholar
  92. Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J 13: 3822–3831.PubMedGoogle Scholar
  93. Tsukada Y, Fang J, Erdjument-Bromage H et al. (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439: 811–816PubMedCrossRefGoogle Scholar
  94. Vaute O, Nicolas E, Vandal L, Trouche D (2002) Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res 30: 475–481.PubMedCrossRefGoogle Scholar
  95. Wang Y, Zhang W, Jin Y, Johansen J, Johansen KM (2001) The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105: 433–443.PubMedCrossRefGoogle Scholar
  96. Wustmann G, Szidonya J, Taubert H, Reuter G (1989) The genetics of position-effect modifying loci in Drosophila melanogaster. Mol Gen Genet 217: 520–527.PubMedGoogle Scholar
  97. Zhang X, Tamaru H, Khan SI et al. (2002) Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111: 117–127.PubMedCrossRefGoogle Scholar
  98. Zhimulev IF (1999) Genetic organization of polytene chromosomes. Advanc Genet 39: 1–599.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Anja Ebert
    • 1
    • 2
  • Sandro Lein
    • 1
  • Gunnar Schotta
    • 1
    • 2
  • Gunter Reuter
    • 1
  1. 1.Institute of Genetics, BiologicumMartin Luther University HalleHalleGermany
  2. 2.Research Institute of Molecular PathologyVienna BiocenterViennaAustria

Personalised recommendations