Chromosome Research

, Volume 14, Issue 1, pp 27–37 | Cite as

Base excision repair in nucleosome substrates

  • Indu Jagannathan
  • Hope A. Cole
  • Jeffrey J. Hayes


Eukaryotic cells must repair DNA lesions within the context of chromatin. Much of our current understanding regarding the activity of enzymes involved in DNA repair processes comes from in-vitro studies utilizing naked DNA as a substrate. Here we review current literature investigating how enzymes involved in base excision repair (BER) contend with nucleosome substrates, and discuss the possibility that some of the activities involved in BER are compatible with the organization of DNA within nucleosomes. In addition, we examine evidence for the role of accessory factors, such as histone modification enzymes, and the role of the histone tail domains in moderating the activities of BER factors on nucleosomal substrates.

Key words

base excision repair chromatin nucleosome 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angelov D, Vitolo JM, Mutskov V, Dimitrov S, Hayes JJ (2001) Preferential interaction of the core histone tail domains with linker DNA. PNAS 98: 6599–6604.CrossRefPubMedGoogle Scholar
  2. Beard BC, Wilson SH, Smerdon MJ (2003) Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. PNAS 100: 7465–7470.CrossRefPubMedGoogle Scholar
  3. Beard BC, Stevenson JJ, Wilson SH, Smerdon MJ (2005) Base excision repair in nucleosomes lacking histone tails. DNA Repair 4: 203–209.CrossRefPubMedGoogle Scholar
  4. Chafin DR, Vitolo JM, Henricksen LA, Bambara RA, Hayes JJ (2000) Human DNA ligase I efficiently seals nicks in nucleosomes. The EMBO J 19: 5492–5501.CrossRefPubMedGoogle Scholar
  5. Chafin DR, Hayes JJ (2001) Site-directed cleavage of DNA by linker histone-Fe(II) EDTA conjugates. Meth Mol Biol 148: 275–290.Google Scholar
  6. Doetsch PW (2002) Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis. Mutat Res 510: 131–140.PubMedGoogle Scholar
  7. Edayathumangalam RS, Weyermann P, Dervan PB, Gottesfeld JM, Luger K (2005) Nucleosomes in solution exist as a mixture of twist-defect states. J Mol Biol 345: 103–114.CrossRefPubMedGoogle Scholar
  8. Friedberg EC (2003) DNA damage and repair. Nature 421: 436–440.Google Scholar
  9. Gowher H, Stockdale CJ, Goyal R, Ferreira H, Owen-Hughes T, Jeltsch A (2005) De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases. Biochemistry 44: 9899–9904.CrossRefPubMedGoogle Scholar
  10. Hasan S, Hassa PO, Imhof R, Hottiger MO (2001a) Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature 410: 387–391.CrossRefPubMedGoogle Scholar
  11. Hasan S, Stucki M, Hassa PO et al. (2001b) Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol Cell 7: 1221–1231.CrossRefPubMedGoogle Scholar
  12. Hayes JJ, Tullius TD, Wolffe AP (1990) The structure of DNA in a nucleosome. PNAS 87: 7405–7409.PubMedGoogle Scholar
  13. He Z, Ingles CJ (1997) Isolation of human complexes proficient in nucleotide excision repair. Nucleic Acids Res 25: 1136– 1141.PubMedGoogle Scholar
  14. Henricksen LA, Bambara RA (1998) Multiprotein reactions in mammalian DNA replication. Leuk Res 22: 1–5CrossRefPubMedGoogle Scholar
  15. Hosfield DJ, Daniels DS, Mol CD, Putnam CD, Parikh SS, Tainer JA (2001) DNA damage recognition and repair pathway coordination revealed by the structural biochemistry of DNA repair enzymes. Prog Nucleic Acid Res Mol Biol 68: 315–347.PubMedGoogle Scholar
  16. Huggins CF, Chafin DR, Aoyagi S, Henricksen LA, Bambara RA, Hayes JJ (2002) Flap endonuclease I efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol Cell 10: 1201–1211.CrossRefPubMedGoogle Scholar
  17. Krokan HE, Standal R, Slupphaug G (1997) DNA glycosylases in the base excision repair of DNA. Biochem J 325: 1–16.PubMedGoogle Scholar
  18. Kysela B, Chovanec M, Jeggo PA (2005) Phosphorylation of linker histones by DNA-dependent protein kinase is required for DNA ligaseIV-dependent ligation in the presence of histone H1. PNAS 102: 1877–1882.CrossRefPubMedGoogle Scholar
  19. Lee KM, Hayes JJ (1998) Linker DNA and H1-dependent reorganization of histone-DNA interactions within the nucleosome. Biochemistry 37: 8622–8628.Google Scholar
  20. Li S, Smerdon MJ (2002) Nucleosome structure and repair of N-methyl purines in the GAL-10 genes of Saccharomyces cerevisiae. J Biol Chem 277: 44651–44659.PubMedGoogle Scholar
  21. Li G, Levitus M, Bustamante C, Widom J (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nature Struct Mol Biol 12: 46–53.Google Scholar
  22. Liu X, Smerdon MJ (2000) Nucleotide excision repair of the 5S ribosomal RNA gene assembled into a nucleosome. J Biol Chem 275: 23729–23735.PubMedGoogle Scholar
  23. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8Å resolution. Nature 389: 251–260.PubMedGoogle Scholar
  24. McCullough AK, Dodson ML, Lloyd RS (1999) Initiation of base excision repair: Glycosylase mechanisms and structures. Annu Rev Biochem 68: 255–285.CrossRefPubMedGoogle Scholar
  25. Memisoglu A, Samson L (2000) Base excision repair in yeast and mammals. Mutat Res 451: 39–51.PubMedGoogle Scholar
  26. Mol CD, Izumi T, Mitra S, Tainer JA (2000) DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination. Nature 403: 451–456.PubMedGoogle Scholar
  27. Negri R, Buttinelli M, Panetta G, De Arcangelis V, Di Mauro E, Travers A (2001) Sequence dependence of translational positioning of core nucleosomes. J Mol Biol 307: 987–999.CrossRefPubMedGoogle Scholar
  28. Nilsen H, Lindahl T, Verreault A (2002) DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO J 21: 5943–5952.CrossRefPubMedGoogle Scholar
  29. Parikh SS, Mol CD, Slupphaug G, Bharati S, Krokan HE, Tainer JA (1998) Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil–DNA glycosylase with DNA. EMBO J 17: 5214–5226.CrossRefPubMedGoogle Scholar
  30. Parikh SS, Putnam CD, Tainer JA (2000) Lessons learned from structural results on uracil–DNA glycosylase. Mutat Res 460: 183–199.PubMedGoogle Scholar
  31. Peterson CL, Cote J (2004) Cellular machineries for chromosomal DNA repair. Genes Dev 18: 602–616.CrossRefPubMedGoogle Scholar
  32. Polach KJ, Widom J (1995) Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol 254: 130–149.CrossRefPubMedGoogle Scholar
  33. Sawaya MR, Prasad R, Wilson SH, Kraut J, Pelletier H (1997) Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: Evidence for an induced fit mechanism. Biochemistry 36: 11205–11215.PubMedGoogle Scholar
  34. Seeberg E, Eide L, Bjoras M (1995) The base excision repair pathway. Trends Biol Sci 20: 391–397.Google Scholar
  35. Shrader TE, Crothers DM (1989) Artificial nucleosome positioning sequences. Proc Natl Acad Sci USA 86: 7418–7422.Google Scholar
  36. Slupphaug G, Mol CD, Kavli B, Arvai AS, Krokan HE, Tainer JA (1996) A nucleotide-flipping mechanism from the structure of human uracil–DNA glycosylase bound to DNA. Nature 384: 87–92.CrossRefPubMedGoogle Scholar
  37. Smerdon MJ, Conconi A (1999) Modulation of DNA damage and DNA repair in chromatin. Prog Nucleic Acid Res Mol Biol 62: 227–255.PubMedGoogle Scholar
  38. Sokhansanj BA, Rodrigue GR, Fitch JP, Wilson DM 3rd (2002) A quantitative model of human base excision repair. I. Mechanistic insights. Nucleic Acids Res 30: 1817–1825.CrossRefPubMedGoogle Scholar
  39. Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P (2002) Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol Cell 9: 265–277.CrossRefPubMedGoogle Scholar
  40. Tuo J, Jaruga P, Rodriguez H, Dizdaroglu M, Bohr VA (2002a) The cockayne syndrome group B gene product is involved incellular repair of 8-hydroxyadenine in DNA. J Biol Chem 277: 30832–30837.CrossRefPubMedGoogle Scholar
  41. Tuo J, Chen C, Zeng X, Christiansen M, Bohr VA (2002b) Functional crosstalk between hOgg1 and the helicase domain of Cokayne syndrome group B protein. DNA Repair 1: 913–927.CrossRefPubMedGoogle Scholar
  42. Ura K, Hayes JJ (2002) Nucleotide excision repair and chromatin remodeling. Eur J Biochem 269: 2288–2293.CrossRefPubMedGoogle Scholar
  43. Woodcock CL, Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 11: 130–135.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Indu Jagannathan
    • 1
  • Hope A. Cole
    • 1
  • Jeffrey J. Hayes
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations