Advertisement

Chromosome Research

, Volume 13, Issue 8, pp 785–793 | Cite as

Avian genomes: different karyotypes but a similar distribution of the GC-richest chromosome regions at interphase

  • Concetta Federico
  • Catia Daniela Cantarella
  • Cinzia Scavo
  • Salvatore Saccone
  • Bertrand Bed'Hom
  • Giorgio BernardiEmail author
Article

Abstract

The chicken karyotype, like that of the vast majority of avian species, shows a large number of dot-shaped microchromosomes that are characterized, like most telomeric regions of the macrochromosomes, by the highest GC levels and the highest gene densities. In interphase nuclei, these gene-dense regions are centrally located, and are characterized by an open chromatin structure (a similar situation also exists in mammals). Avian species belonging to the Accipitridae family (diurnal raptors) show a karyotype with no very large chromosomes, and with only a very small number of microchromosomes. To identify the GC-rich (and gene-rich) regions of the chromosomes and nuclei from Accipitridae, we performed heterologous in-situ hybridizations using chicken GC-richest isochores as probes. Our results clearly show that the gene-rich regions are prevalently located in the few microchromosome pairs and in the telomeric regions of the middle-sized chromosomes, as well as in the interior of the interphase nuclei. This result is consistent with a common organization of the genome in the nuclei of warm-blooded vertebrates. Indeed, in spite of the different size and morphology of the chromosomes, the gene-dense regions are always located in the interior of the nuclei.

Key words

Accipitridae Aegypius occipitalis birds Elanus caeruleus Falconiformes Gallus domesticus Gyps fulvus interphase nucleus isochore karyotype 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreozzi L, Federico C, Motta S et al. (2001) Compositional mapping of chicken chromosomes and identification of the gene-richest regions. Chromosome Res 9: 521–532.CrossRefPubMedGoogle Scholar
  2. Bed'Hom B (2000) Evolution of karyotype organisation in Accipitridae: a translocation model. In: Sankoff D, Nadeau JH, eds. Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families. The Netherlands: Kluwer Academic Publishers, pp 347–356.Google Scholar
  3. Bed'Hom B, Darre R, Fillon V (1998) Chromosome banding studies in the Bateleur (Terathopius ecaudatus: Aves, Accipitridae). Chromosome Res 6: 437–440.CrossRefPubMedGoogle Scholar
  4. Bed'Hom B, Coullin P, Guillier-Gencik Z, Moulin S, Bernheim A, Volobouev V (2003) Characterization of the atypical karyotype of the black-winged kite Elanus caeruleus (Falconiformes: Accipitridae) by means of classical and molecular cytogenetic techniques. Chromosome Res 11: 335–343.CrossRefPubMedGoogle Scholar
  5. Bolzer A, Kreth G, Solovei I et al. (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3: e157, 826–842.Google Scholar
  6. Cacciò S, Perani P, Saccone S, Kadi F, Bernardi G (1994) Single-copy sequence homology among the GC-richest isochores of the genomes from warm-blooded vertebrates. J Mol Evol 39: 331–339.PubMedGoogle Scholar
  7. Christidis L (1990) Animal Cytogenetics, vol. 4: Chordata 3. B. Aves. Berlin, Stuttgart: Gebrüder Borntraeger.Google Scholar
  8. Cortadas J, Olofsson B, Meunier-Rotival M, Macaya G, Bernardi G (1979) The DNA components of the chicken genome. Eur J Biochem 99: 179–186.CrossRefPubMedGoogle Scholar
  9. De Boer LEM (1976) The somatic chromosome complements of 16 species of Falconiformes (Aves) and the karyological relationships of the order. Genetica 46: 77–113.Google Scholar
  10. De Boer LEM, Sinoo RP (1984) A karyological study of Accipitridae (Aves: Falconiformes), with karyotypic description of 16 species new to cytology. Genetica 65: 89–107.Google Scholar
  11. Federico C, Andreozzi L, Saccone S, Bernardi G (2000) Gene density in the Giemsa bands of human chromosomes. Chromosome Res 8: 737–746.CrossRefPubMedGoogle Scholar
  12. Federico C, Saccone S, Andreozzi L et al. (2004) The pig genome: compositional analysis and identification of the gene-richest regions in chromosomes and nuclei. Gene 343: 245–251.CrossRefPubMedGoogle Scholar
  13. Federico C, Scavo C, Cantarella CD, Motta S, Saccone S, Bernardi G (2005) Gene-rich and gene-poor chromosomal regions have different locations in the interphase nuclei of cold-blooded vertebrates. Chromosoma, in press.Google Scholar
  14. Ferreira J, Paolella G, Ramos C, Lamond AI (1997) Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. Cell Biol 139: 1597–1610.Google Scholar
  15. Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118: 555–566.CrossRefPubMedGoogle Scholar
  16. ICGSC (International Chicken Genome Sequencing Consortium) (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695–716.Google Scholar
  17. Kadi F, Mouchiroud D, Sabeur G, Bernardi G (1993) The compositional patterns of the avian genomes and their evolutionary implications. J Mol Evol 37: 544–551.CrossRefGoogle Scholar
  18. Kohler CD, Schaadt CP, Vekemans MJJ (1989) Chromosome banding studies of the osprey Pandion haliaetus (Aves, Falconiformes). Genome 32: 1037–1040.Google Scholar
  19. McQueen HA, Fantes, J, Cross SH, Clark VH, Archibald AL, Bird AP (1996) CpG islands of chicken are concentrated on microchromosomes. Nat Genet 12: 321–324.CrossRefPubMedGoogle Scholar
  20. McQueen HA, Siriaco G, Bird AP (1998) Chicken microchromosomes are hyperacetilated, early replicating and gene rich. Genome Res 8: 621–630.PubMedGoogle Scholar
  21. Mouchiroud D, D'Onofrio G, Aïssani B, Macaya G, Gautier C, Bernardi G (1991) The distribution of genes in the human genome. Gene 100: 181–187.CrossRefPubMedGoogle Scholar
  22. Olofsson B, Bernardi G (1983) Organization of nucleotide sequences in the chicken genome. Eur J Biochem 130: 241–245.CrossRefPubMedGoogle Scholar
  23. Padilla JA, Martinez-Trancon M, Rabasco A, Fernandez-Garcia JL (1999) The karyotype of the Iberian imperial eagle (Aquila adalberti) analyzed by classical and DNA replication banding. Cytogenet Cell Genet 84: 61–66.CrossRefPubMedGoogle Scholar
  24. Sabeur G, Macaya G, Kadi F, Bernardi G (1993) The isochore patterns of mammalian genomes and their phylogenetic implications. J Mol Evol 37: 93–108.PubMedGoogle Scholar
  25. Saccone S, De Sario A, Della Valle G, Bernardi G (1992) The highest gene concentrations in the human genome are in T-bands of metaphase chromosomes. Proc Natl Acad Sci USA 89: 4913–4917.PubMedGoogle Scholar
  26. Saccone S, Cacciò S, Kusuda J, Andreozzi L, Bernardi G (1996) Identification of the gene-richest bands in human chromosomes. Gene 174: 85–94.CrossRefPubMedGoogle Scholar
  27. Saccone C, Cacciò S, Perani P et al. (1997) Compositional mapping of mouse chromosomes and identification of the gene-rich regions. Chromosome Res 5: 293–300.CrossRefPubMedGoogle Scholar
  28. Saccone S, Federico C, Solovei I, Croquette MF, Della Valle G, Bernardi G (1999) Identification of the gene-richest bands in human prometaphase chromosomes. Chromosome Res 7: 379–386.CrossRefPubMedGoogle Scholar
  29. Saccone S, Federico C, Bernardi G (2002) Localization of the gene-richest and the gene-poorest isochores in the interphase nuclei of mammals and birds. Gene 300: 169–178.PubMedGoogle Scholar
  30. Sadoni N, Langer S, Fauth C et al. (1999) Nuclear organization of mammalian genomes: polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 146: 1211–1226.CrossRefPubMedGoogle Scholar
  31. Schmid M, Enderle E, Schindler D, Schempp W (1989) Chromosome banding and DNA replication patterns in bird karyotypes. Cytogenet Cell Genet 52: 139–146.PubMedCrossRefGoogle Scholar
  32. Smith J, Bruley CK, Paton IR (2000) Differences in gene density on chicken macrochromosomes and microchromosomes. Anim Genet 31: 96–103.PubMedGoogle Scholar
  33. Strouboulis J, Wolffe AP (1996) Functional compartmentalization of the nucleus. J Cell Sci 109: 1991–2000.PubMedGoogle Scholar
  34. Zoubak S, Clay O, Bernardi G (1996) The gene distribution of the human genome. Gene 174: 95–102.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Concetta Federico
    • 1
  • Catia Daniela Cantarella
    • 1
  • Cinzia Scavo
    • 1
  • Salvatore Saccone
    • 1
  • Bertrand Bed'Hom
    • 2
  • Giorgio Bernardi
    • 3
    Email author
  1. 1.Dipartimento di Biologia Animale “M. La Greca”University of CataniaCataniaItaly
  2. 2.UMR INRA/INAPG Génétique et Diversité AnimaleJouy en Josas CedexFrance
  3. 3.Laboratorio di Evoluzione MolecolareStazione Zoologica Anton DohrnNapoliItaly

Personalised recommendations