Chromosome Research

, Volume 13, Issue 5, pp 469–479

Telomeres in evolution and evolution of telomeres



This paper examines telomeres from an evolutionary perspective. In the monocot plant order Asparagales two evolutionary switch-points in telomere sequence are known. The first occurred when the Arabidopsis-type telomere was replaced by a telomere based on a repeat motif more typical of vertebrates. The replacement is associated with telomerase activity, but the telomerase has low fidelity and this may have implications for the binding of telomeric proteins. At the second evolutionary switch-point, the telomere and its mode of synthesis are replaced by an unknown mechanism. Elsewhere in plants (Sessia, Vestia, Cestrum) and in arthropods, the telomere “typical” of the group is lost. Probably many other groups with “unusual” telomeres will be found. We question whether telomerase is indeed the original end-maintenance system and point to other candidate processes involving t-loops, t-circles, rolling circle replication and recombination. Possible evolutionary outcomes arising from the loss of telomerase activity in alternative lengthening of telomere (ALT) systems are discussed. We propose that elongation of minisatellite repeats using recombination/replication processes initially substitutes for the loss of telomerase function. Then in more established ALT groups, subtelomeric satellite repeats may replace the telomeric minisatellite repeat whilst maintaining the recombination/replication mechanisms for telomere elongation. Thereafter a retrotransposition-based end-maintenance system may become established. The influence of changing sequence motifs on the properties of the telomere cap is discussed. The DNA and protein components of telomeres should be regarded – as with any other chromosome elements – as evolving and co-evolving over time and responding to changes in the genome and to environmental stresses. We describe how telomere dysfunction, resulting in end-to-end chromosome fusions, can have a profound effect on chromosome evolution and perhaps even speciation.

Key words

ALT end-maintenance evolution plant telomere telomere cap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams SP, Hartman TP, Lim KY et al. (2001) Loss and recovery of Arabidopsis-type telomere repeat sequences 5′-(TTTAGGG)(n)-3′ in the evolution of a major radiation of flowering plants. Proc R Soc Lond B Biol Sci 268: 1541–1546.CrossRefGoogle Scholar
  2. Adams SP, Leitch IJ, Bennett MD, Leitch AR (2000) Aloe L. – a second plant family without (TTTAGGG)n telomeres. Chromosoma 109: 201–205.CrossRefPubMedGoogle Scholar
  3. Barnes SR, James AM, Jamieson G (1985) The organisation, nucleotide sequence, and chromosomal distribution of satellite DNA from Allium cepa. Chromosoma 92: 185–192.Google Scholar
  4. Barton NH, Hewitt GM (1981) A chromosomal cline in the grasshopper Podisma pedestris. Evolution 35: 1008–1018.Google Scholar
  5. Bedoyan JK, Lejnine S, Makarov VL, Langmore JP (1996) Condensation of rat telomere-specific nucleosomal arrays containing unusually short DNA repeats and histone H1. J Biol Chem 271: 18485–18493.CrossRefPubMedGoogle Scholar
  6. Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120: 33–53.CrossRefPubMedGoogle Scholar
  7. Boulton SJ, Jackson SP (1996) Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res 24: 4639–4648.CrossRefPubMedGoogle Scholar
  8. Broun P, Ganal MW, Tanksley SD (1992) Telomeric arrays display high levels of heritable polymorphism among closely related plant varieties. Proc Natl Acad Sci USA 89: 1354–1357.PubMedGoogle Scholar
  9. Bryan TM, Marusic L, Bacchetti S, Namba M, Reddel RR (1997) The telomere lengthening mechanism in telomerase-negative immortal human cells does not involve the telomerase RNA subunit. Hum Mol Genet 6: 921–926.CrossRefPubMedGoogle Scholar
  10. Butlin RK (1993) Barriers to gene flow. Nature 366: 27.CrossRefGoogle Scholar
  11. Chen Q, Ijpma A, Greider CW (2001) Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol Cell Biol 21: 1819–1827.CrossRefPubMedGoogle Scholar
  12. Dudasova Z, Dudas A, Chovanec M (2004) Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev 28: 581–601.CrossRefPubMedGoogle Scholar
  13. Fajkus J, Trifonov EN (2001) Columnar packing of telomeric nucleosomes. Biochem Biophys Res Commun 280: 961–963.CrossRefPubMedGoogle Scholar
  14. Fajkus J, Vyskot B, Bezdek M (1992) Changes in chromatin structure due to hypomethylation induced with 5-azacytidine or dL-ethionine. FEBS Lett 314: 13–16.CrossRefPubMedGoogle Scholar
  15. Fajkus J, Kovarik A, Kralovics R, Bezdek M (1995) Organization of telomeric and subtelomeric chromatin in the higher plant Nicotiana tabacum. Mol Gen Genet 247: 633–638.CrossRefPubMedGoogle Scholar
  16. Fajkus J, Novotná M, Ptáček J (2002) Analysis of chromosome termini in potato varieties. Rostl Výroba 48: 477–479.Google Scholar
  17. Fajkus J, Sykorova E, Leitch AR (2005) Techniques in plant telomere biology. Biotechniques 38: 233–243.PubMedGoogle Scholar
  18. Fay MF, Rudall PJ, Sullivan S et al. (2000) Phylogentic studies of Asparagales based on four plastid regions. In: Wilson KL, Morrison DA eds., Monocots: Systematics and Evolution. Melbourne: CSIRO, pp. 360–371.Google Scholar
  19. Featherstone C, Jackson SP (1998) DNA repair: the Nijmegen breakage syndrome protein. Curr Biol 8: R622–625.CrossRefPubMedGoogle Scholar
  20. Fitzgerald MS, Riha K, Gao F, Ren S, McKnight TD, Shippen DE (1999) Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc Natl Acad Sci USA 96: 14813–14818.Google Scholar
  21. Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJ, Zabel P, de Jong JH (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9: 421–430.CrossRefPubMedGoogle Scholar
  22. Frydrychova R, Marec F (2002) Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera). Genetica 115: 179–187.PubMedGoogle Scholar
  23. Frydrychova R, Grossmann P, Trubac P, Vitkova M, Marec F (2004) Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome 47: 163–178.CrossRefPubMedGoogle Scholar
  24. Ganal MW, Lapitan NL, Tanksley SD (1991) Macrostructure of the tomato telomeres. Plant Cell 3: 87–94.PubMedGoogle Scholar
  25. Garcia-Cao M, O’Sullivan R, Peters AH, Jenuwein T, Blasco MA (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36: 94–99.PubMedGoogle Scholar
  26. Gazdova B, Siroky J, Fajkus J et al. (1995) Characterization of a new family of tobacco highly repetitive DNA, GRS, specific for the Nicotiana tomentosiformis genomic component. Chromosome Res 3: 245–254.CrossRefPubMedGoogle Scholar
  27. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43: 405–413.CrossRefPubMedGoogle Scholar
  28. Greider CW, Blackburn EH (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51: 887–898.CrossRefPubMedGoogle Scholar
  29. Hartmann N, Scherthan H (2004) Characterization of ancestral chromosome fusion points in the Indian muntjac deer. Chromosoma 112: 213–220.CrossRefPubMedGoogle Scholar
  30. Hauffe HC, Panithanarak T, Dallas JF, Pialek J, Gunduz I, Searle JB (2004) The tobacco mouse and its relatives: a “tail” of coat colors, chromosomes, hybridization and speciation. Cytogenet Genome Res 105: 395–405.CrossRefPubMedGoogle Scholar
  31. Hewitt GM, Nichols RA, Barton NH (1987) Homogamy in a hybrid zone in the alpine grasshopper Podisma pedestris. Heredity 59: 457–466.Google Scholar
  32. Ioshikhes I, Bolshoy A, Trifonov EN (1992) Preferred positions of AA and TT dinucleotides in aligned nucleosomal DNA sequences. J Biomol Struct Dyn 9: 1111–1117.PubMedGoogle Scholar
  33. Ioshikhes I, Bolshoy A, Derenshteyn K, Borodovsky M, Trifonov EN (1996) Nucleosome DNA sequence pattern revealed by multiple alignment of experimentally mapped sequences. J Mol Biol 262: 129–139.CrossRefPubMedGoogle Scholar
  34. King M (1993) Species Evolution. The role of chromosome change, Cambridge: Cambridge University Press.Google Scholar
  35. Kovařík A, Fajkus J, Koukalová BE, Bezděk M (1996) Species-specific evolution of telomeric and rDNA repeats in the tobacco composite genome. Theor Appl Genet 92: 1108–1111.CrossRefGoogle Scholar
  36. Kralovics R, Fajkus J, Kovarik A, Bezdek M (1995) DNA curvature of the tobacco GRS repetitive sequence family and its relation to nucleosome positioning. J Biomol Struct Dyn 12: 1103–1119.PubMedGoogle Scholar
  37. Kuchar M, Fajkus J (2004) Interactions of putative telomere-binding proteins in Arabidopsis thaliana: identification of functional TRF2 homolog in plants. FEBS Lett 578: 311–315.CrossRefPubMedGoogle Scholar
  38. Lee C, Sasi R, Lin CC (1993) Interstitial localization of telomeric DNA sequences in the Indian muntjac chromosomes: further evidence for tandem chromosome fusions in the karyotypic evolution of the Asian muntjacs. Cytogenet Cell Genet 63: 156–159.PubMedGoogle Scholar
  39. Lei M, Podell ER, Cech TR (2004) Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol 11: 1223–1229.CrossRefPubMedGoogle Scholar
  40. Lejnine S, Makarov VL, Langmore JP (1995) Conserved nucleoprotein structure at the ends of vertebrate and invertebrate chromosomes. Proc Natl Acad Sci USA 92: 2393–2397.PubMedGoogle Scholar
  41. Levin DA (2002) The Role of Chromosomal Change in Plant Evolution. New York: Oxford University Press.Google Scholar
  42. Liu D, Safari A, O’Connor MS et al. (2004) PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6: 673–680.CrossRefPubMedGoogle Scholar
  43. Lopez CC, Rodriguez E, Diez JL, Edstrom J, Morcillo G (1999) Histochemical localization of reverse transcriptase in polytene chromosomes of chironomids. Chromosoma 108: 302–307.CrossRefPubMedGoogle Scholar
  44. Louis EJ (2002) Are Drosophila telomeres an exception or the rule? Genome Biol 3: Review S0007.Google Scholar
  45. Makarov VL, Lejnine S, Bedoyan J, Langmore JP (1993) Nucleosomal organization of telomere-specific chromatin in rat. Cell 73: 775–787.CrossRefPubMedGoogle Scholar
  46. McClintock B (1938) The fusion of broken chromosome ends of sister half-chromatids following chromatid breakage at meiotic anaphases. Missouri Agric Exp Station Res Bull 290: 1–48.Google Scholar
  47. McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26: 234–282.Google Scholar
  48. Muller HJ (1938) The remaking of chromosomes. Collecting Net. 13: 181–195, 198.Google Scholar
  49. Nosek J, Rycovska A, Makhov AM, Griffith JD, Tomaska L (2005) Amplification of telomeric arrays via rolling-circle mechanism. J Biol Chem 280: 10840–10845.PubMedGoogle Scholar
  50. Oguchi, K, Liu, H, Tamura, K, Takahashi, H 1999Molecular cloning and characterization of AtTERT, a telomerase reverse transcriptase homolog in Arabidopsis thalianaFEBS Lett457465469CrossRefPubMedGoogle Scholar
  51. Pearce SR, Pich U, Harrison G, Flavell AJ et al. (1996) The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Res 4: 357–364.PubMedGoogle Scholar
  52. Pich U, Schubert I (1998) Terminal heterochromatin and alternative telomeric sequences in Allium cepa. Chromosome Res 6: 315–321.CrossRefPubMedGoogle Scholar
  53. Pich U, Fritsch R, Schubert I (1996a) Closely related Allium species (Alliaceae) share a very similar satellite sequence. Plant Syst Evol 202: 255–264.CrossRefGoogle Scholar
  54. Pich U, Fuchs J, Schubert I (1996b) How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? Chromosome Res 4: 207–213.PubMedGoogle Scholar
  55. Porter G, Westmoreland J, Priebe S, Resnick MA (1996) Homologous and homeologous intermolecular gene conversion are not differentially affected by mutations in the DNA damage or the mismatch repair genes RAD1, RAD50, RAD51, RAD52, RAD54, PMS1 and MSH2. Genetics 143: 755–767.PubMedGoogle Scholar
  56. Puizina J, Weiss-Schneeweiss H, Pedrosa-Harand A et al. (2003) Karyotype analysis in Hyacinthella dalmatica (Hyacinthaceae) reveals vertebrate-type telomere repeats at the chromosome ends. Genome 46: 1070–1076.CrossRefPubMedGoogle Scholar
  57. Puizina J, Siroky J, Mokros P, Schweizer D, Riha K (2004) Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. Plant Cell 16: 1968–1978.CrossRefPubMedGoogle Scholar
  58. Ríha, K, Shippen, DE 2003Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in ArabidopsisProc Natl Acad Sci USA100611615CrossRefPubMedGoogle Scholar
  59. Ríha K, McKnight TD, Griffing LR, Shippen DE (2001) Living with genome instability: plant responses to telomere dysfunction. Science 291: 1797–1800.CrossRefPubMedGoogle Scholar
  60. Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53: 127–136.CrossRefPubMedGoogle Scholar
  61. Rosen M, Edstrom J (2000) DNA structures common for chironomid telomeres terminating with complex repeats. Insect Mol Biol 9: 341–347.CrossRefPubMedGoogle Scholar
  62. Rossetti L, Cacchione S, Fua M, Savino M (1998) Nucleosome assembly on telomeric sequences. Biochemistry 37: 6727–6737.CrossRefPubMedGoogle Scholar
  63. Rotkova G, Sklenickova M, Dvorackova M, Sykorova E, Leitch AR, Fajkus J (2004) An evolutionary change in telomere sequence motif within the plant section Asparagales had significance for telomere nucleoprotein complexes. Cytogenet Genome Res 107: 132–138.PubMedGoogle Scholar
  64. Sadaie M, Naito T, Ishikawa F (2003) Stable inheritance of telomere chromatin structure and function in the absence of telomeric repeats. Genes Dev 17: 2271–2282.CrossRefPubMedGoogle Scholar
  65. Sahara K, Marec F, Traut W (1999) TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res 7: 449–460.CrossRefPubMedGoogle Scholar
  66. Sasaki T, Fujiwara H (2000) Detection and distribution patterns of telomerase activity in insects. Eur J Biochem 267: 3025–3031.PubMedGoogle Scholar
  67. Schrumpfova P, Kuchar M, Mikova G, Skrisovska L, Kubicarova T, Fajkus J (2004) Characterization of two Arabidopsis thaliana myb-like proteins showing affinity to telomeric DNA sequence. Genome 47: 316–324.PubMedGoogle Scholar
  68. Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92: 143–148.CrossRefGoogle Scholar
  69. Siroky J, Zluvova J, Riha K, Shippen DE, Vyskot B (2003) Rearrangements of ribosomal DNA clusters in late generation telomerase-deficient Arabidopsis. Chromosoma 112: 116–123.CrossRefPubMedGoogle Scholar
  70. Sykorova E, Fajkus J, Ito M, Fukui K (2001) Transition between two forms of heterochromatin at plant subtelomeres. Chromosome Res 9: 309–323.CrossRefPubMedGoogle Scholar
  71. Sykorova E, Lim KY, Fajkus J, Leitch AR (2003a) The signature of the Cestrum genome suggests an evolutionary response to the loss of (TTTAGGG)n telomeres. Chromosoma 112: 164–172.CrossRefPubMedGoogle Scholar
  72. Sykorova E, Lim KY, Chase MW, Knapp S, Leitch IJ, Leitch AR, Fajkus J (2003b) The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Plant J 34: 283–291.CrossRefPubMedGoogle Scholar
  73. Sykorova E, Lim KY, Kunicka Z et al. (2003c) Telomere variability in the monocotyledonous plant order Asparagales. Proc R Soc Lond B Biol Sci 270: 1893–1904.CrossRefGoogle Scholar
  74. Teng SC, Zakian VA (1999) Telomere–telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19: 8083–8093.PubMedGoogle Scholar
  75. Tomaska L, Nosek J, Makhov AM, Pastorakova A, Griffith JD (2000) Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance. Nucleic Acids Res 28: 4479–4487.CrossRefPubMedGoogle Scholar
  76. Tomaska L, McEachern MJ, Nosek J (2004) Alternatives to telomerase: keeping linear chromosomes via telomeric circles. FEBS Lett 567: 142–146.CrossRefPubMedGoogle Scholar
  77. Tommerup H, Dousmanis A, de Lange T (1994) Unusual chromatin in human telomeres. Mol Cell Biol 14: 5777–5785.PubMedGoogle Scholar
  78. van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92: 401–413.CrossRefPubMedGoogle Scholar
  79. Vershinin AV, Heslop-Harrison JS (1998) Comparative analysis of the nucleosomal structure of rye, wheat and their relatives. Plant Mol Biol 36: 149–161.PubMedGoogle Scholar
  80. Vitkova M, Kral J, Traut W, Zrzavy J, Marec F (2005) The evolutionary origin of insect telomeric repeats, (TTAGG)n. Chromosome Res 13: 145–156.CrossRefPubMedGoogle Scholar
  81. Weiss H, Scherthan H (2002) Aloe spp. – plants with vertebrate-like telomeric sequences. Chromosome Res 10: 155–164.CrossRefPubMedGoogle Scholar
  82. Weiss-Schneeweiss H, Riha K, Jang CG, Puizina J, Scherthan H, Schweizer D (2004) Chromosome termini of the monocot plant Othocallis siberica are maintained by telomerase, which specifically synthesises vertebrate-type telomere sequences. Plant J 37: 484–493.CrossRefPubMedGoogle Scholar
  83. West CE, Waterworth WM, Sunderland PA, Bray CM (2004) Arabidopsis DNA double-strand break repair pathways. Biochem Soc Trans 32: 964–966.CrossRefPubMedGoogle Scholar
  84. White MJD (1973) Animal Cytology and Evolution. London: Cambridge University Press.Google Scholar
  85. Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103: 642–652.PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Jiří Fajkus
    • 1
    • 2
  • Eva Sýkorová
    • 1
    • 2
  • Andrew R. Leitch
    • 3
  1. 1.Laboratory of Functional Genomics and Proteomics, Faculty of ScienceMasaryk University BrnoBrnoCzech Republic
  2. 2.Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  3. 3.School of Biological SciencesQueen Mary University of LondonLondonUK

Personalised recommendations