Chromosome Research

, Volume 13, Issue 5, pp 443–453 | Cite as

Two retrotransposons maintain telomeres in Drosophila

  • M.-L. Pardue
  • S. Rashkova
  • E. Casacuberta
  • P. G. DeBaryshe
  • J. A. George
  • K. L. Traverse


Telomeres across the genus Drosophila are maintained, not by telomerase, but by two non-LTR retrotransposons, HeT-A and TART, that transpose specifically to chromosome ends. Successive transpositions result in long head-to-tail arrays of these elements. Thus Drosophila telomeres, like those produced by telomerase, consist of repeated sequences reverse transcribed from RNA templates. The Drosophila repeats, complete and 5′-truncated copies of HeT-A and TART, are more complex than telomerase repeats; nevertheless, these evolutionary variants have functional similarities to the more common telomeres. Like other telomeres, the Drosophila arrays are dynamic, fluctuating around an average length that can be changed by changes in the genetic background. Several proteins that interact with telomeres in other species have been found to have homologues that interact with Drosophila telomeres. Although they have hallmarks of non-LTR retrotransposons, HeT-A and TART appear to have a special relationship to Drosophila. Their Gag proteins are efficiently transported into diploid nuclei where HeT-A Gag recruits TART Gag to chromosome ends. Gags of other non-LTR elements remain predominantly in the cytoplasm. These studies provide intriguing evolutionary links between telomeres and retrotransposable elements.

Key words

chromosome evolution Gag protein nuclear localization retrotransposon telomere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abad JP, De Pablos B, Osoegawa K, De Jong PJ, Martin-Gallardo A, Villasante A (2004a) Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at telomeres. Mol Biol Evol 21: 1613–1619.CrossRefPubMedGoogle Scholar
  2. Abad JP, De Pablos B, Osoegawa K, De Jong PJ, Martin-Gallardo A, Villasante A (2004b) TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. Mol Biol Evol 21: 1620–1624.CrossRefPubMedGoogle Scholar
  3. Askree SH, Yehuda T, Smolikov S et al. (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci USA 101: 8658–8663.CrossRefPubMedGoogle Scholar
  4. Beverley SM, Wilson AC (1984) Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. JMol Evol 21: 1–13.PubMedGoogle Scholar
  5. Blackburn EH (1992) Telomerases. Annu Rev Biochem 61: 113–129.CrossRefPubMedGoogle Scholar
  6. Blackburn EH (2001) Switching and signaling at the telomere. Cell 106: 661–673.CrossRefPubMedGoogle Scholar
  7. Blasco MA (2002) Telomerase beyond telomeres. Nat Rev, Cancer 2: 627–633.Google Scholar
  8. Casacuberta E, Pardue M-L (2003a) Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. Proc Natl Acad Sci USA 100: 3363–3368.CrossRefPubMedGoogle Scholar
  9. Casacuberta E, Pardue M-L (2003b) HeT-A elements in D. virilis: retrotransposon telomeres are conserved across the Drosophila genus. Proc Natl Acac Sci USA 100: 14091–14096.CrossRefGoogle Scholar
  10. Casacuberta E, Pardue M-L (2005) HeT-A and TART, two Drosophila retrotransposons with a bona fide role in chromosome structure for more than 60 million years. Cytogenet Genome Res (special issue “Retransposable elements and genome evolution”) (in press).Google Scholar
  11. Cenci G, Siriaco G, Raffa GD, Kellum R, Gatti MM (2003) The Drosophila HOAP protein is required for telomere capping. Nat Cell Biol 5: 82–84.CrossRefPubMedGoogle Scholar
  12. Collins K (2000) Mammalian telomeres and telomerase. Curr Opin Cell Biol 12: 378–383.CrossRefPubMedGoogle Scholar
  13. Fanti L, Giovinazzo G, Berloco M, Pimpinelli S (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 2: 527–538.CrossRefPubMedGoogle Scholar
  14. George JA, Pardue M-L (2003) The promoter of the heterochromatic Drosophila telomeric retrotransposon, HeT-A, is active when moved into euchromatic locations. Genetics 163: 625–635.PubMedGoogle Scholar
  15. Greider CW (1996) Telomere length regulation. Annu Rev Biochem 65: 337–365.CrossRefPubMedGoogle Scholar
  16. Greider CW, Blackburn EH (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51: 887–898.CrossRefPubMedGoogle Scholar
  17. Griffith JD, Comeau L, Rosenfield S et al. (1999) Mammalian telomeres end in a large duplex loop. Cell 97: 503–514.CrossRefPubMedGoogle Scholar
  18. Henson JD, Neumann AA, Yeager TR, Reddel RR (2002) Alternative lengthening of telomeres in mammalian cells. Oncogene 21: 598–610.CrossRefPubMedGoogle Scholar
  19. Jacks T (1990) Translational suppression in gene expression in retroviruses and retrotransposons. Curr Top Microbiol Immunol 157: 93–124.PubMedGoogle Scholar
  20. Kahn T, Savitsky M, Georgiev P (2000) Attachment of HeT-A sequences to chromosomal termini in Drosophila melanogaster may occur by different mechanisms. Mol Cell Biol 20: 7634–7642.CrossRefPubMedGoogle Scholar
  21. Karlseder J, Smogorzewska A, de Lange T (2002) Senescence induced by altered telomere state, not telomere loss. Science 295: 2446–2449.CrossRefPubMedGoogle Scholar
  22. Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605.CrossRefPubMedGoogle Scholar
  23. Lundblad V, Blackburn EH (1993) An alternative pathway for yeast telomere maintenance rescues est1 senescence. Cell 73: 347–360.CrossRefPubMedGoogle Scholar
  24. McClintock B (1978) Mechanisms that rapidly reorganize the genome. Stadler Genet Symp 10: 25–47.Google Scholar
  25. Melnikova L, Georgiev P (2002) Enhancer of terminal gene conversion,a new mutation in D. melanogaster that induces telomere elongation by gene conversion. Genetics 162: 1301–1312.PubMedGoogle Scholar
  26. Melnikova L, Biessmann H, Georgiev P (2005) The ku protein complex is involved in length regulation of Drosophila telomeres. Genetics 169: 034538.Google Scholar
  27. Mikhailovsky S, Belenkaya T, Georgiev P (1999) Broken chromosome ends can be elongated by conversion in Drosophila melanogaster. Chromosoma 108: 114–120.CrossRefPubMedGoogle Scholar
  28. Okazaki S, Tsuchida K, Maekawa H, Ishikawa H, Fijiwara H (1993) Identification of a pentanucleotide telomeric sequence (TTAGGG)n in the silkworm, Bombyx mori, and other insects. Mol Cell Biol 13: 1424–1432.PubMedGoogle Scholar
  29. Pardue M-L, DeBaryshe PG (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37: 485–511.CrossRefPubMedGoogle Scholar
  30. Pardue M-L, Danilevskaya ON, Lowenhaupt K, Slot F, Traverse KL (1996) Drosophila telomeres: new views on chromosome evolution. Trends Genet 12: 48–52.CrossRefPubMedGoogle Scholar
  31. Purdy A, Su TT (2004) Telomeres: not all breaks are equal. Curr Biol 14: R613–614.CrossRefPubMedGoogle Scholar
  32. Rashkova S, Karam SE, Pardue M-L (2002a) Element-specific localization of Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm. Proc Natl Acad Sci USA 99: 3621–3626.CrossRefPubMedGoogle Scholar
  33. Rashkova S, Karam SE, Pardue M-L (2002b) Element-specific localization of Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm. Proc Natl Acad Sci USA 99: 3621–3626.CrossRefPubMedGoogle Scholar
  34. Rashkova S, Athanasiadis A, Pardue M-L (2003) Intracellular targeting of Gag proteins of the Drosophila telomeric retrotransposons. J Virol 77: 6376–6384.Google Scholar
  35. Sahara K, Marec F, Traut W (1999) TTAAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res 7: 449–460.CrossRefPubMedGoogle Scholar
  36. Savitsky M, Kravchuk O, Melnikova L, Georgiev P (2002) Heterochromatin protein 1 is involved in control of telomere elongation in Drosophila melanogaster. Mol Cell Biol 22: 3204–3218.CrossRefPubMedGoogle Scholar
  37. Siriaco GM, Cenci G, Haoudi A et al. (2002) Telomere elongation (Tel), a new mutation in Drosophilla melanogaster that produces long telomeres. Genetics 160: 235–245.PubMedGoogle Scholar
  38. Walter MF, Biessmann H (2004) Expression of the telomeric retrotransposon HeT-A in D. melanogaster is correlated with cell proliferation. Dev Genes Evol 214: 211–219.CrossRefPubMedGoogle Scholar
  39. Wills JW, Craven RC (1992) Form, function, and use of retroviral Gag proteins. Aids 5: 639–654.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • M.-L. Pardue
    • 1
  • S. Rashkova
    • 1
  • E. Casacuberta
    • 1
  • P. G. DeBaryshe
    • 1
  • J. A. George
    • 1
  • K. L. Traverse
    • 1
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations