Chromosome Research

, Volume 13, Issue 5, pp 431–441 | Cite as

Drosophila telomeres: the non-telomerase alternative

Article

Abstract

In most eukaryotes, telomeres are composed of simple repetitive sequences renewable by telomerase. By contrast, Drosophila telomeres comprise arrays of non-LTR retrotransposons HeT-A, TART, and TAHRE belonging to three different families. However, closer inspection reveals that the two quite different telomere systems share quite a few components and regulatory circuits. Here we present the current knowledge on Drosophila telomeres and discuss the possible mechanisms of telomere length control.

Key words

Drosophila retrotransposons TAS telomere t-loop 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abad JP, de Pablos B, Osoegawa K, de Jong PJ, Martin-Gallardo A, Villasante A (2004a) Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at the telomeres. Mol Biol Evol 21: 1613–1619.Google Scholar
  2. Abad JP, de Pablos B, Osoegawa K, de Jong PJ, Martin-Gallardo A, Villasante A (2004b) TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. Mol Biol Evol 21: 1620–1624.CrossRefPubMedGoogle Scholar
  3. Alexander MK, Zakian VA (2003) Rap1p telomere association is not required for mitotic stability of a C3TA2 telomere in yeast. EMBO J 22: 1688–1696.CrossRefPubMedGoogle Scholar
  4. Belenkaya T, Soldatov A, Nabirochkina E, Birjukova I, Georgieva S, Georgiev P (1998) The allele of the polyhomeotic gene induced by P element insertion encodes a new chimeric protein, that negatively regulates the expression of P-induced alleles in the yellow locus of Drosophila melanogaster. Genetics 150: 687–697.PubMedGoogle Scholar
  5. Bertuch AA, Lundblad V (2003) Which end: dissecting Ku’s function at telomeres and double-strand breaks. Genes Dev 17: 2347–2350.CrossRefPubMedGoogle Scholar
  6. Bi X, Wei SC, Rong YS (2004) Telomere protection without a telomerase, the role of ATM and Mre11 in Drosophila telomere maintenance. Curr Biol 14: 1348–1353.CrossRefPubMedGoogle Scholar
  7. Biessmann H, Mason JM (1988) Progressive loss of DNA sequences from terminal chromosome deficiencies in Drosophila melanogaster. EMBO J 7: 1081–1086.PubMedGoogle Scholar
  8. Biessmann H, Mason JM (2003) Telomerase-independent mechanisms of telomere elongation. Cell Mol Life Sci 60: 2325–2333.CrossRefPubMedGoogle Scholar
  9. Biessmann H, Mason JM, Ferry K et al. (1990) Addition of telomere-associated HeT DNA sequences “heals” broken chromosome ends in Drosophila. Cell 61: 663–673.CrossRefPubMedGoogle Scholar
  10. Biessmann H, Champion LE, O’Hare K, Ikenaga K, Kasravi B, Mason JM (1992) Frequent transpositions of Drosophila melanogaster HeT-A transposable elements to receding chromosome ends. EMBO J 11: 4459–4469.PubMedGoogle Scholar
  11. Blackburn EH (2001) Switching and signaling at the telomere. Cell 106: 661–673.CrossRefPubMedGoogle Scholar
  12. Boivin A, Gally C, Netter S, Anxolabehere D, Ronsseray S (2003) Telomeric associated sequences of Drosophila recruit Polycomb-group proteins in vivo and can induce pairing-sensitive repression. Genetics 164: 195–208.PubMedGoogle Scholar
  13. Brevet V, Berthiau A-S, Civitelli L et al. (2003) The number of vertebrate repeats can be regulated at yeast telomeres by Rap1-independent mechanisms. EMBO J 22: 1697–1706.PubMedGoogle Scholar
  14. Casacuberta E, Pardue ML (2003a) HeT-A elements in Drosophila virilis: retrotransposon telomeres are conserved across the Drosophila genus. Proc Natl Acad Sci USA 100: 14091–14096.PubMedGoogle Scholar
  15. Casacuberta E, Pardue ML (2003b) Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. Proc Natl Acad Sci USA 100: 3363–3368.CrossRefPubMedGoogle Scholar
  16. Cech TR (2004) Beginning to understand the end of the chromosome. Cell 116: 273–279.CrossRefPubMedGoogle Scholar
  17. Cenci G, Siriaco G, Raffa GD, Kellum R, Gatti M (2003) The Drosophila HOAP protein is required for telomere capping. Nat Cell Biol 5: 82–84.Google Scholar
  18. Ciapponi L, Cenci G, Ducau J et al. (2004) The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage. Curr Biol 14: 1360–1366.CrossRefPubMedGoogle Scholar
  19. Danilevskaya ON, Traverse KL, Hogan NC, DeBaryshe PG, Pardue M-L (1999) The two Drosophilatelomeric transposable elements have very different patterns of transcription. Mol Cell Biol 19: 873–881.PubMedGoogle Scholar
  20. de Lange T (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5: 323–329.CrossRefPubMedGoogle Scholar
  21. Eickbush TH (1997) Telomerase and retrotransposons: which came first? Science 277: 911–912.CrossRefPubMedGoogle Scholar
  22. Eissenberg JC, Elgin SCR (2000) The HP1 protein family: getting a grip on chromatin. Curr Opin Genet Dev 10: 204–210.CrossRefPubMedGoogle Scholar
  23. Fanti L, Giovinazzo G, Berlogo M, Pimpinelli S (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 2: 527–538.CrossRefPubMedGoogle Scholar
  24. Garcia-Cao M, O’Sullivan R, Peters AH, Jenuwein T, Blasco MA (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36: 94–99.PubMedGoogle Scholar
  25. George JA, Pardue M-L (2003) The promoter of the heterochromatin Drosophila telomeric retrotransposon, HeT-A, is active when moved into euchromatic locations. Genetics 163: 625–635.PubMedGoogle Scholar
  26. Griffith JD, Comeau L, Rosenfield S et al. (1999) Mammalian telomeres end in a large duplex loop. Cell 97: 503–514.CrossRefPubMedGoogle Scholar
  27. Gryderman DE, Morris EJ, Biessmann H, Elgin SCR, Wallrath LL (1999) Silencing at Drosophila telomeres: nuclear organization and chromatin play critical roles. EMBO J 18: 3724–3735.CrossRefPubMedGoogle Scholar
  28. Kahn T, Savitsky M, Georgiev P (2000) Attachment of HeT-A sequences to chromosomal termini in Drosophila melanogaster may occur by different mechanisms. Mol Cell Biol 20: 7634–7642.CrossRefPubMedGoogle Scholar
  29. Karpen GH, Spradling AC (1992) Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single-P element insertional mutagenesis. Genetics 132: 737–753.PubMedGoogle Scholar
  30. Kass-Eisler A, Greider CW (2000) Recombination in telomere-length maintenance. Trends Biochem Sci 25: 200–204.CrossRefPubMedGoogle Scholar
  31. Kellum R (2003) HP1 complexes and heterochromatin assembly. Curr Top Microbiol Immunol 274: 53–77.PubMedGoogle Scholar
  32. Kurenova E, Champion L, Biessmann H, Mason JM (1998) Directional gene silencing induced by a complex subtelomeric satellite from Drosophila. Chromosoma 107: 311–320.CrossRefPubMedGoogle Scholar
  33. Levis RW (1989) Viable deletions of a telomere from a Drosophila chromosome. Cell 58: 791–801.CrossRefPubMedGoogle Scholar
  34. Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM (1993) Transposons in place of telomere repeats at a Drosophila telomere. Cell 75: 1083–1093.CrossRefPubMedGoogle Scholar
  35. Levy DL, Blackburn EH (2004) Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol Cell Biol 24: 10857–10867.CrossRefPubMedGoogle Scholar
  36. Lundblad V (2002) Telomere maintenance without telomerase. Oncogene 21: 522–531.CrossRefPubMedGoogle Scholar
  37. Mason JM, Konev AY, Golubovsky MD, Biessmann H (2003a) Cis- and trans-acting influences on telomeric position effect in Drosophila melanogaster detected with a subterminal transgene. Genetics 163: 917–930.PubMedGoogle Scholar
  38. Mason JM, Konev AY, Biessmann H (2003b) Telomeric position effect in Drosophila melanogaster reflects a telomere length control mechanism. Genetica 117: 319–325.CrossRefPubMedGoogle Scholar
  39. Mason JM, Ransom J, Konev AY (2004) A deficiency screen for dominant suppressors of telomeric silencing in Drosophila. Genetics 168: 1353–1370.CrossRefPubMedGoogle Scholar
  40. Melnikova L, Georgiev P (2002) Enhancer of terminal gene conversion, a new mutation in Drosophila melanogaster that induces telomere elongation by gene conversion. Genetics 162: 1301–1312.PubMedGoogle Scholar
  41. Melnikova L, Biessmann H, Georgiev P (2004) The vicinity of a broken chromosome end affects P element mobilization in Drosophila melanogaster. Mol Genet Genomics 272: 512–518.CrossRefPubMedGoogle Scholar
  42. Melnikova L, Biessmann H, Georgiev P (2005) The Ku protein complex is involved in length regulation of Drosophila telomeres. Genetics 170: 221–235.Google Scholar
  43. Mikhailovsky S, Belenkaya T, Georgiev P (1999) Broken chromosome ends can be elongated by conversion in Drosophila melanogaster. Chromosoma 108: 114–120.CrossRefPubMedGoogle Scholar
  44. Morin GB, Cech TR (1986) The telomeres of the linear mitochondrial DNA of Tetrahymena thermophila consist of 53 bp tandem repeats. Cell 46: 873–883.CrossRefPubMedGoogle Scholar
  45. Oikemus SR, McGinnes N, Queiroz-Machado J et al. (2004) Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect. Genes Dev 18: 1850–1861.CrossRefPubMedGoogle Scholar
  46. Pal-Bhadra M, Leibovitch BA, Gandhi SG et al. (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303: 669–672.CrossRefPubMedGoogle Scholar
  47. Pardue ML, DeBaryshe PG (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37: 485–511.CrossRefPubMedGoogle Scholar
  48. Pastwa E, Blasiak J (2003) Non-homologous end joining. Acta Biochim Pol 50: 891–908.PubMedGoogle Scholar
  49. Perini B, Piacentini L, Fanti L et al. (2004) HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol Cell 15: 467–476.CrossRefPubMedGoogle Scholar
  50. Purdy A, Su TT (2004) Telomeres: not all breaks are equal. Curr Biol 14: 613–614.CrossRefGoogle Scholar
  51. Rashkova S, Karam SE, Kellum R, Pardue M-L (2002a) Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell Sci 159: 397–402.Google Scholar
  52. Rashkova LN, Karam SE, Pardue M-L (2002b) Element-specific localization Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm. Proc Natl Acad Sci USA 99: 3621–3626.CrossRefPubMedGoogle Scholar
  53. Rashkova S, Athanasiadis A, Pardue M-L (2003) Intracellular targeting of Gag proteins of the Drosophila telomeric retrotransposons. J Virol 77: 6376–6384.CrossRefPubMedGoogle Scholar
  54. Rosen M, Edstrom JE (2000) DNA structures common for chironomid telomeres terminating with complex repeats. Insect Mol Biol 9: 314–347.CrossRefGoogle Scholar
  55. Roth CW, Kobeski F, Walter MF, Biessmann H (1997) Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Mol Cell Biol 17: 5176–5183.PubMedGoogle Scholar
  56. Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72: 481–516.CrossRefPubMedGoogle Scholar
  57. Savitsky M, Kravchuk O, Melnikova L, Georgiev P (2002) Heterochromatin protein 1 is involved in control of telomere elongation in Drosophila melanogaster. Mol Cell Biol 22: 3204–3218.CrossRefPubMedGoogle Scholar
  58. Shareef MM, King C, Damaj M, Badagu R, Huang DW, Kellum R (2001) Drosophila heterochromatin protein 1 (HP1)/origin recognition complex (ORC) protein is associated with HP1 and ORC and functions in heterochromatin-induced silencing. Mol Biol Cell 12: 1671–1685.PubMedGoogle Scholar
  59. Sharma GG, Hwang KK, Pandita RK et al. (2003) Human heterochromatin protein 1 isoforms HP1(Has) and HP1(Hsb) interfere with hTERT–telomere interactions and correlate with changes in cell growth and response to ionizing radiation. Mol Cell Biol 23: 8363–8376.CrossRefPubMedGoogle Scholar
  60. Sheen FM, Levis RW (1994) Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc Natl Acad Sci USA 91: 12510–12514.PubMedGoogle Scholar
  61. Silva E, Tiong S, Pedersen M et al. (2004) ATM is required for telomere maintenance and chromosome stability during Drosophila development. Curr Biol 14: 1341–1347.CrossRefPubMedGoogle Scholar
  62. Siriaco GM, Cenci G, Haoudi A et al. (2002) Telomere elongation (Tel), a new mutation in Drosophila melanogaster that produces long telomeres. Genetics 160: 235–245.PubMedGoogle Scholar
  63. Smith CD, Smith DL, DeRisi JL, Blackburn EH (2003) Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol Biol Cell 14: 556–570.CrossRefPubMedGoogle Scholar
  64. Smogorzewska A, de Lange T (2004) Regulation of telomeres by telomeric proteins. Annu Rev Biochem 73: 177–208.CrossRefPubMedGoogle Scholar
  65. Song K, Jung Y, Jung D, Lee I (2001) Human Ku70 interacts with heterochromatin protein 1 alpha. J Biol Chem 276: 8321–8327.CrossRefPubMedGoogle Scholar
  66. Song YH, Mirey G, Betson M, Haber DA, Settleman J (2004) The Drosophila ATM ortholog, dATM, mediates the response to ionizing radiation and spontaneous DNA damage during development. Curr Biol 14: 1354–1359.CrossRefPubMedGoogle Scholar
  67. Teixeira MT, Arneric M, Sperisen P, Lingner J (2004) Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell 117: 323–335.PubMedGoogle Scholar
  68. Vagin VV, Klenov MS, Kalmykova AI, Stolyarenko AD, Kotelnikov RN, Gvozdev VA (2004) The RNA interference proteins and vasa locus are involved in the silencing of retrotransposons in the female germline of Drosophila melanogaster. RNA Biol 1: 54–58.Google Scholar
  69. Wallrath LL, Elgin SC (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 9: 1263–1277.PubMedGoogle Scholar
  70. Walter MF, Jang C, Kasravi B et al. (1995) DNA organization and polymorphism of a wild-type Drosophila telomere region. Chromosoma 104: 229–241.PubMedGoogle Scholar
  71. Walter MF, Bozorgnia L, Maheshwari A, Biessmann H (2001) The rate of terminal nucleotide loss from a telomere of the mosquito Anopheles gambiae. Insect Mol Biol 10: 105–110.PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations