Chromosome Research

, Volume 13, Issue 6, pp 627–636 | Cite as

Characterizing the chromosomes of the Australian model marsupial Macropus eugenii (tammar wallaby)

  • Amber E. Alsop
  • Pat Miethke
  • Ruth Rofe
  • Edda Koina
  • Natasha Sankovic
  • Janine E. Deakin
  • Helen Haines
  • Robert W. Rapkins
  • Jennifer A. Marshall Graves
Article

Abstract

Marsupials occupy a phylogenetic middle ground that is very valuable in genome comparisons of mammal and other vertebrate species. For this reason, whole genome sequencing is being undertaken for two distantly related marsupial species, including the model kangaroo species Macropus eugenii (the tammar wallaby). As a first step towards the molecular characterization of the tammar genome, we present a detailed description of the tammar karyotype, report the development of a set of molecular anchor markers and summarize the comparative mapping data for this species.

Key words

comparative mapping cytogenetics genomics karyotype Macropus marsupial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson L, Archibald A, Ashburner M et al. (1996) Comparative genome organization of vertebrates. The First International Workshop on Comparative Genome Organization. Mamm Genome 7(10): 717–734.CrossRefPubMedGoogle Scholar
  2. Arizona Genomics Institute (2005) Internet references. Retrieved from http://www.genome.arizona.edu/orders/ME_KBa_Clone.html 19/5/2005.
  3. De Leo AA, Guedelha N, Toder R et al. (1999) Comparative chromosome painting between three Australian marsupials with the 2n = 14 putative ancestral marsupial karyotype. Chromosome Res 7: 509–517.CrossRefPubMedGoogle Scholar
  4. Edwards JH (1991) The Oxford grid. Annals Hum Genet 55: 17–31.Google Scholar
  5. Graves JAM (1967) DNA synthesis in chromosomes of cultured leucocytes from two marsupial species. Exp Cell Res 46: 37–47.CrossRefPubMedGoogle Scholar
  6. Graves JAM, Dawson GW (1988) The relationship between position and expression of genes on the kangaroo X chromosome suggests a tissue-specific spread of inactivation from a single control site. Genet Res 51: 103–109.PubMedGoogle Scholar
  7. Hayman DL (1990) Marsupial cytogenetics. Aust J Zool 37: 331–349.CrossRefGoogle Scholar
  8. Hayman DL, Martin PG (1974) Mammalia I: Monotremata and Marsupalia. In: John B, eds. Animal Cytogenetics. Vol. 4. Berlin Stuttgart: Gebrüder Borntraeger, pp 1–110.Google Scholar
  9. ISCN (1995) An International System for Human Cytogenetic Nomenclature. Mitelman F, ed. Basel: S. Karger AG.Google Scholar
  10. Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392(6679): 917–920.Google Scholar
  11. McKusick VA (1988) Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders, 8th ed. Baltimore: Johns Hopkins University Press.Google Scholar
  12. Murphy WJ, Eizirik E, O’Brien SJ et al. (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351.CrossRefPubMedGoogle Scholar
  13. National Human Genome Research Institute, 2005a. Internet references. Retrieved from http://www.genome.gov/10002154 19/5/2005.
  14. National Human Genome Research Institute, 2005b. Internet references. Retrieved from http://www.genome.gov/12512285 19/5/2005.
  15. National Human Genome Research Institute, 2005c. Internet references. Retrieved from http://www.genome.gov/12512299 19/5/2005.
  16. O’Brien SJ, Menotti-Raymond M, Murphy WJ et al. (1999) The promise of comparative genomics in mammals. Science 286: 458–481.CrossRefPubMedGoogle Scholar
  17. Rens W, O’Brien PC, Fairclough H et al. (2003) Reversal and convergence in marsupial chromosome evolution. Cytogenet Genome Res 102(1–4): 282–290.CrossRefPubMedGoogle Scholar
  18. Robins AJ, Hayman DL, Wells JRE (1984) Ribosomal gene reiteration in a marsupial species with an X-linked nucleolar organizer. Aust J Biol Sci 37: 211–215.PubMedGoogle Scholar
  19. Rofe R, Hayman D (1985) G-banding evidence for a conserved complement in the Marsupalia. Cytogenet Cell Genet 39: 40–50.PubMedGoogle Scholar
  20. Sambrook J, Russel DW (2001) Preparation and analysis of eukaryotic genomic DNA. In: Molecular Cloning: A Laboratory Manual 3rd ed. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press, pp 6.1–6.30.Google Scholar
  21. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 298(7731): 971–972.CrossRefGoogle Scholar
  22. Sharman GB (1971) Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230: 231–232.CrossRefPubMedGoogle Scholar
  23. Thomas JW, Touchman JW (2002) Vertebrate genome sequencing: building a backbone for comparative genomics. Trends Genet 18(2): 104–108.CrossRefPubMedGoogle Scholar
  24. Toder R, O’Neill RJ, Wienberg J, O’Brien PC, Voullaire L, Marshall-Graves JA (1997a) Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system. Mamm Genome 8(6): 418–422.CrossRefPubMedGoogle Scholar
  25. Toder R, Wienberg J, Voullaire L, Maccarone P, Graves JAM (1997b) Shared DNA sequences between the X and Y chromosomes in the tammar wallaby – evidence for independent additions to eutherian and marsupial sex chromosomes. Chromosoma 106: 94–98.CrossRefPubMedGoogle Scholar
  26. Toder R, Wakefield M, Graves JAM (2000) The minimal mammalian Y chromosome – the marsupial Y as a model system. Cytogenet Cell Genet 91: 285–292.CrossRefPubMedGoogle Scholar
  27. Tyndale-Biscoe H (2005) Consummate kangaroos. In: Life of Marsupials. Collingwood, Australia: CSIRO Publishing, pp 287–364.Google Scholar
  28. Wakefield MJ, Graves JAM (2003) The kangaroo genome: leaps and bounds in comparative genomics. EMBO Rep 4: 143–147.CrossRefPubMedGoogle Scholar
  29. Wakefield MJ, Keohane AM, Turner BM, Graves JAM (1997) Histone deacetylation is an ancient component of mammalian X chromosome inactivation. Proc Natl Acad Sci USA 94: 9665–9668.CrossRefPubMedGoogle Scholar
  30. Woodburne MO, Rich TH, Springer MS (2003) The evolution of tribospheny and the antiquity of mammalian clades. Mol Phylogenet Evol 28(2): 360–385.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Amber E. Alsop
    • 1
  • Pat Miethke
    • 1
  • Ruth Rofe
    • 2
  • Edda Koina
    • 1
  • Natasha Sankovic
    • 1
  • Janine E. Deakin
    • 1
  • Helen Haines
    • 1
  • Robert W. Rapkins
    • 1
  • Jennifer A. Marshall Graves
    • 1
  1. 1.ARC Centre for Kangaroo Genomics, Research School of Biological SciencesThe Australian National UniversityCanberraAustralia
  2. 2.Department of Environmental BiologyUniversity of AdelaideSouth AustraliaAustralia

Personalised recommendations