Combustion, Explosion, and Shock Waves

, Volume 46, Issue 2, pp 121–131 | Cite as

Searching for ways to create energetic materials based on polynitrogen compounds (review)

  • V. E. ZarkoEmail author


Polynitrogen compounds (containing only nitrogen atoms) are promising candidates as energetic materials for rocket engineering. The high energy content of these compounds is due to the significant difference in bond energy between nitrogen atoms. In particular, molecular nitrogen (N2) is characterized by a uniquely strong triple bond — 229 kcal/mole, whereas the single-bond energy is only 38.4 kcal/mole. From theoretical estimates, use of polynitrogen compounds can provide a specific impulse of 350–500 sec with material density in a range of 2.0–3.9 g/cm3. This paper gives a brief review of the current status of experimental and theoretical studies in the chemistry of polynitrogen compounds.

Key words

polynitrogen compounds bond energy specific impulse polymeric nitrogen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    High Energy Density Materials, Springer, Berlin-Heidelberg (2007) (Structure and Bonding Ser., Vol. 125).Google Scholar
  2. 2.
    M. B. Talawar, R. Sivabalan, S. N. Aasthana, and H. Singh, “Novel ultrahigh energy materials,” Combust., Expl., Shock Waves, 41, No. 3, 264–277 (2005).CrossRefGoogle Scholar
  3. 3.
    P. C. Samartzis and A. M. Wodtke, “All-nitrogen chemistry: how far are we from N60?,” Int. Rev. in Phys. Chem., 25, No. 4, 527–552 (2006).CrossRefGoogle Scholar
  4. 4.
    D. B. Lempert, G. N. Nechiporenko, and S. I. Soglasnova, “Energetic potential of compositions based on high-enthalpy polynitrogen compounds,” Combust., Expl., Shock Waves, 45, No. 2, 160–168 (2009).CrossRefGoogle Scholar
  5. 5.
    Discovery of New Polynitrogen May Open Door to a New Class of Chemical Propellants, Dec 01-AFRL Horizons,
  6. 6.
    B.M. Rice, E. F. C. Byrd, and W. D. Mattson, “Computational aspects of nitrogen-rich HEDMs,” High Energy Density Materials, Springer, Berlin-Heidelberg (2007), pp. 153–194 (Structure and Bonding Ser., Vol. 125).CrossRefGoogle Scholar
  7. 7.
    D. Rutherford, De aero fixo ant mephitic (On air said to be fixed or mephitic): MD thesis, University of Edinburgh, 1772.Google Scholar
  8. 8.
    T. Curtius, “The azide ion,” Berichte Dtsch. Chem. Ges., 23, 3023 (1890).CrossRefGoogle Scholar
  9. 9.
    T. A. Scott, “Solid and liquid nitrogen,” Phys. Rep., 27, No. 3, 89–157 (1976).CrossRefADSGoogle Scholar
  10. 10.
    B. A. Thrush, “The detection of free radicals in the high intensity photolysis of hydrogen azide,” Proc. Roy. Soc. London, Ser. A: Math. Phys. Sci., 235, 143–147 (1956).CrossRefADSGoogle Scholar
  11. 11.
    J. M. L. Martin, J. P. Francois, and R. Gijbels, “Ab initio study of boron, nitrogen, and boron-nitrogen clusters. I. Isomers and thermochemistry of B3, B2N, BN2, and N3,” J. Chem. Phys., 90, No. 11, 6469–6485 (1989).CrossRefADSGoogle Scholar
  12. 12.
    J. Wasilewski, “Stationary points on the lowest doublet and quartet hypersurfaces of the N3 radical: A comparison of molecular orbital and density functional approaches,” J. Chem. Phys., 105, No. 24, 10969–10982 (1996).CrossRefADSGoogle Scholar
  13. 13.
    M. J. Pellerite, R. L. Jackson, and J. I. Brauman, “Proton affinity of the gaseous azide ion. The N H bond dissociation energy in HN3,” J. Phys. Chem., 85, 1624–1626 (1981).CrossRefGoogle Scholar
  14. 14.
    J. M. L. Martin, J. P. Francois, and R. Gijbels, “The dissociation energy of N3,” J. Chem. Phys., 93, No. 6, 4485–4486 (1990).CrossRefADSGoogle Scholar
  15. 15.
    P. Zhang, K. Morokuma, and A. M. Wodtke, “High-level ab initio studies of unimolecular dissociation of the ground-state N3 radical,” J. Chem. Phys., 122, 014106 (2005).CrossRefADSGoogle Scholar
  16. 16.
    Y. G. Byun, S. Saebo, C. U. Pittman, and J. Amer, “An ab initio study of potentially aromatic and antiaromatic three-membered rings,” Chem. Soc., 113, 3689–3696 (1991).CrossRefGoogle Scholar
  17. 17.
    R. Tarroni and P. Tosi, “Cyclic and bent electronic states of the N3+ ion,” Chem. Phys. Lett., 389, 274–278 (2004).CrossRefADSGoogle Scholar
  18. 18.
    Z. L. Cai, Y. F. Wang, and H. M. Xiao, “Ab initio study of low-lying electronic states of the N3+ ion,” Chem. Phys., 164, 377–381 (1992).CrossRefADSGoogle Scholar
  19. 19.
    F. Carnovale, J. B. Peel, and R. G. Rothwell, “Photoelectron spectroscopy of the nitrogen dimer (N2)2 and clusters (N2)n:N2 dimer revealed as the chromophore in photoionization of condensed nitrogen,” J. Chem. Phys., 88, No. 2, 642–650 (1988).CrossRefADSGoogle Scholar
  20. 20.
    V. Aquilanti, M. Bartolomei, D. Cappelletti, E. Carmona-Novillo, and F. Pirani, “Dimers of the major components of the atmosphere: Realistic potential energy surfaces and quantum mechanical prediction of spectral features,” Phys. Chem. Chem. Phys., 3, 3891–3894 (2001).CrossRefGoogle Scholar
  21. 21.
    F. M. Bickelhaupt, R. Hoffmann, and R. Levine, “Forbidden four-center reactions: Molecular orbital considerations for N2 + N2 and N2 + N2+,” J. Phys. Chem. A, 101, 8255–8263 (1997).CrossRefGoogle Scholar
  22. 22.
    C. Leonard, P. Rosmus, S. Carter, and N. C. Handy, “Potential energy function and vibrational states of the electronic ground state of N4+,” J. Phys. Chem. A, 103, 1846–1852 (1999).CrossRefGoogle Scholar
  23. 23.
    L. G. McKnight, K. B. McAfee, and D. P. Sipler, “Lowfield drift velocities and reactions of nitrogen ions in nitrogen,” Phys. Rev., 164, 62–70 (1967).CrossRefADSGoogle Scholar
  24. 24.
    M. M. Francl and J. P. Chesick, “The N4 molecule and its metastability,” J. Phys. Chem., 94, 526–528 (1990).CrossRefGoogle Scholar
  25. 25.
    M. Bittererova, T. Brinck, and H. Ostmark, “Theoretical study of the triplet N4 potential energy surface,” J. Phys. Chem. A, 104, No. 51, 11999–12005 (2000).CrossRefGoogle Scholar
  26. 26.
    S. Evangelisti, “Properties, dynamics, and electronic structure of atoms and molecules,” Int. J. Quantum Chem., 96, No. 6, 598–606 (2004).CrossRefGoogle Scholar
  27. 27.
    P. Pyykko and N. Runeberg, “Ab initio studies of bonding trends: Part 9. The dicyanamide-carbon suboxide-dicyanoethercyanogen azide isoelectronic series A=B=C=D=E1,” J. Mol. Struct. Theochem., 234, 279–290 (1991).CrossRefGoogle Scholar
  28. 28.
    K. O. Christe, W. W. Wilson, J. A. Sheehy, and J. A. Boatz, “N5+: a novel homoleptic polynitrogen ion as a high energy density material,” Angew. Chemie, Int. Ed., 38, Nos. 13/14, 2004–2009 (1999).Google Scholar
  29. 29.
    M. T. Nguyen and T. K. Ha, “Theoretical study of the pentanitrogen (N5+),” Chem. Phys. Lett., 317, 135–141 (2000).CrossRefADSGoogle Scholar
  30. 30.
    D. A. Dixon, D. Feller, K. O. Christe, et al. “Enthalpies of formation of gas-phase N3, N3, N5, and N5 from ab initio molecular orbital theory, stability predictions for N5+ N3 and N5+ N5, and experimental evidence for the instability of N5+ N3,” J. Amer. Chem. Soc., 126, No. 3, 834–843 (2004).CrossRefGoogle Scholar
  31. 31.
    X. Wang, H. R. Hu, A. M. Tian, N. B. Wong, S. H. Chien, and W. K. Li, “An isometric study of N5+, N5, and N5: a Gaussian-3 investigation,” Chem. Phys. Lett., 329, 483–489 (2000).CrossRefADSGoogle Scholar
  32. 32.
    M. T. Nguyen, M. A. McGinn, A. F. Hegarty, and J. Elguero, “Can the pentazole anion (N5) be isolated and/or trapped in metal complexes?,” Polyhedron, 4, No. 10, 1721–1726 (1985).CrossRefGoogle Scholar
  33. 33.
    Q. S. Li and Y. D. Liu, “Theoretical studies of the N6 potential energy surface,” J. Phys. Chem. A, 106, 9538–9542 (2002).CrossRefGoogle Scholar
  34. 34.
    R. Engelke and J. R. Stine, “Is N8 cubane stable?,” J. Phys. Chem., 94, 5689–5694 (1990).CrossRefGoogle Scholar
  35. 35.
    M. L. Leininger, C. D. Sherrill, and H. F. Schaefer, “N8: Structure analogous to pentalene, and other high energy density minima,” J. Phys. Chem., 99, 2324–2328 (1995).CrossRefGoogle Scholar
  36. 36.
    L. Gagliardi, S. Evangelisti, A. Bernhardsson, R. Lindh, and B. O. Roos, “Dissociation reaction of N8 azapentalene to 4N2: A theoretical study,” Int. J. Quant. Chem., 77, 311–315 (2000).CrossRefGoogle Scholar
  37. 37.
    M. N. Glukhovtsev, H. J. Jiao, and P. V. Schleyer, “Besides N2, what is the most stable molecule composed only of nitrogen atoms?,” Inorg. Chem., 35, No. 24, 7124–7133 (1996).CrossRefGoogle Scholar
  38. 38.
    S. Li, H. Qu, and Q. S. Li, “Quantum chemical study on N60,” Chem. J. Chinese Univ., 18, 297 (1997).Google Scholar
  39. 39.
    M. R. Manaa, “Toward new energy-rich molecular systems: from N10 to N60,” Chem. Phys. Lett., 331, Nos. 2–4, 262–268 (2000).CrossRefADSGoogle Scholar
  40. 40.
    L. J. Wang and Z. M. Zgierski, “Super-high energy-rich nitrogen cluster N60,” Chem. Phys. Lett., 376, No. 5–6, DOI 698703 (2003).Google Scholar
  41. 41.
    H. Zhoua, N.-B. Wongb, and A. Tiana, “Theoretical study on the cylinder-shaped N78 cage,” J. Mol. Graphics Modell., 25, No. 4, 578–583 (2006).CrossRefGoogle Scholar
  42. 42.
    H. Zhoua and N.-B. Wongb, “Theoretical investigation on the cylinder-shaped N84 cage,” Chem. Phys. Lett., 449, Nos. 4–6, 272–275, (2007).CrossRefADSGoogle Scholar
  43. 43.
    S. P. Lewis and M. L. Cohen, “High-pressure atomic phases of solid nitrogen,” Phys. Rev. B, 46, 11117–11120 (1992).CrossRefADSGoogle Scholar
  44. 44.
    C. Mailhiot, L. H. Yang, and A. K. McMahan, “Polymeric nitrogen,” Phys. Rev. B, 46, No. 22, 14419–14435 (1992).CrossRefADSGoogle Scholar
  45. 45.
    W. D. Mattson, D. Sanchez-Portal, S. Chiesa, and R. M. Martin, “Prediction of new phases of nitrogen at high pressure from first-principles simulations,” Phys. Rev. Lett., 93, 125501–125505 (2004).CrossRefADSGoogle Scholar
  46. 46.
    R. Caracas and R. J. Hemley, “New structures of dense nitrogen: pathways to the polymer phase,” Chem. Phys. Lett., 442, Nos. 1–3, 65–70 (2007).CrossRefADSGoogle Scholar
  47. 47.
    F. Zahariev, S. V. Dudiy, J. Hooper, F. Zhang, and T. K. Woo, “Systematic method to new phases of polymeric nitrogen under high-pressure,” Phys. Rev. Lett., 97, 155503 (2006).CrossRefADSGoogle Scholar
  48. 48.
    H. Abou-Rachid, A. Hu, D. Arato, et al., “Novel nanoscale high energetic materials: nanostructure polymeric nitrogen and polynitrogen,” in: 7th Int. Symp. on Special Topics in Chem. Prop., Book of Abstracts, Kyoto, Japan (2007), p. 163; See also in: K. K. Kuo and K. Hori (eds.), Advancements in Energetic Materials and Chemical Propulsion, Begell House, New York, (2008), pp. 364–376.Google Scholar
  49. 49.
    H. Abou-Rachid, A. Hu, V. Timoshevskii, et al., “Nanoscale high energetic materials: A polymeric nitrogen chain N8 confined inside a carbon nanotube,” Phys. Rev. Lett., 100, No. 1–4, 196401 (2008).CrossRefADSGoogle Scholar
  50. 50.
    A. E. Douglas and W. J. Jones, “The 2700 Å bands of the N3 molecule,” Can. J. Phys., 43, 2216 (2008).ADSGoogle Scholar
  51. 51.
    N. Hansen and A. M. Wodtke, “Velocity map ion imaging of chlorine azide photolysis: Evidence for photolytic production of cyclic-N3,” J. Phys. Chem. A, 107, 10608 (2003).CrossRefGoogle Scholar
  52. 52.
    N. Hansen, A. M. Wodtke, S. J. Goncher, J. C. Robinson, N. E. Sveum, and D. M. Neumark, “Photofragment translation spectroscopy of ClN3 at 248 nm: Determination of the primary and secondary dissociation pathways,” J. Chem. Phys., 123, 104305 (2005).CrossRefADSGoogle Scholar
  53. 53.
    J. Zhang, Y. Chen, K. Yuan, S. A. Harich, X. Wang, X. Yang, P. Zhang, Z. Wang, K. Morokuma, and A. M. Wodtke, “An experimental and theoretical study of ring closing dynamics in HN3,” Phys. Chem. Chem. Phys., 8, 1690–1696 (2006).CrossRefGoogle Scholar
  54. 54.
    C. Larson, Yu. Ji, P. C. Samartzis, et al., “Observation of photochemical C-N bond cleavage in CH3N3: A new photochemical route to cyclic N3,” J. Phys. Chem., 112, No. 6, 1105–1111 (2008).Google Scholar
  55. 55.
    J. M. Dyke, H. N. B. Jonathan, A. E. Lewis, and A. Morris, “Vacuum ultraviolet photoelectron spectroscopy of transient species. Pt 15. The N3(X 2II) radical,” Mol. Phys., 47, 1231–1240 (1982).CrossRefADSGoogle Scholar
  56. 56.
    C. L. Haynes, W. Freysinger, and P. B. Armentrout, “Collision-induced dissociation of N3+ (X 3 σ ) with NE, AR, KR, and XE,” Int. J. Mass Spectr., 150, 267–278 (1995).CrossRefADSGoogle Scholar
  57. 57.
    P. C. Samartzis, J. J. M. Lin, T. T. Ching, et al. “Two photoionization thresholds of N3 produced by ClN3 photodissociation at 248 nm: further evidence for cyclic N3,” J. Chem. Phys., 123, No. 5, 051101 (2005).CrossRefADSGoogle Scholar
  58. 58.
    M. Whitaker, M. A. Biondi, and R. Johnsen, “Electron-temperature dependence of dissociative recombination of electrons with N2+ · N2 dimer ions,” Phys. Rev. A, 24, 743–745 (1981).CrossRefADSGoogle Scholar
  59. 59.
    L. B. Knight, K. D. Johannessen, D. C. Cobranchi, E. A. Earl, D. Feller, and E. R. Davidson, “ESR and ab initio theoretical studies of the cation radicals 14N4+ and 15N4+. The trapping of ion-net at 4 K,” J. Chem. Phys., 87, 885–897 (1987).CrossRefADSGoogle Scholar
  60. 60.
    J. P. Zheng, J. Waluk, J. Spanget-Larsen, D. M. Blake, and J. G. Radziszewski, “Tetrazete (N4). Can it be prepared and observed?,” Chem. Phys. Lett., 328, 227–233 (2000).CrossRefADSGoogle Scholar
  61. 61.
    F. Cacase, G. de Petris, and A. Troiani, “Experimental detection of tetranitrogen,” Science, 295, 480–481 (2002).CrossRefADSGoogle Scholar
  62. 62.
    F. Cacase, “From N2 and O2 to N4 and O4: Pneumatic chemistry in the 21st centry,” Chem. Europ. J., 8, 3839–3847 (2002).Google Scholar
  63. 63.
    E. E. Renie and P. M. Mayer, “Confirmation of the long-lived tetra-nitrogen (N4) molecule using neutralization-reionization mass spectrometry and ab initio calculations,” J. Chem. Phys., 120, No. 22, 10561–10578 (2004).CrossRefADSGoogle Scholar
  64. 64.
    P. Zurer, “Chemistry’s top five achievements in 1999,” Chem. Eng. News, 77, No. 4, 7 (1999).Google Scholar
  65. 65.
    A. Vij, W. W. Wilson, V. Vij, F. S. Tham, J. A. Sheehy, and K. O. Christe, “Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+,” J. Amer. Chem. Soc., 123, 6308 (2001).CrossRefGoogle Scholar
  66. 66.
    K. O. Christe, “Recent advances in the chemistry of N, N and high-oxygen compounds,” Propellants, Explosives, Pyrotechnics, 32, No. 3, 194–204 (2007).CrossRefGoogle Scholar
  67. 67.
    A. Vij, J. G. Pavlovich, W. W. Wilson, V. Vij, and K. O. Christe, “Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5, Angew. Chemie, Intern. Ed., 41, S. 3051 (2002).CrossRefGoogle Scholar
  68. 68.
    M. I. Eremets, R. J. Eremets, and H.-k. Mao, “Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability,” Nature, 411, 170–174 (2001).CrossRefADSGoogle Scholar
  69. 69.
    M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, “Single-bonded cubic form of nitrogen,” Nature Mater., 3, 558–563 (2004).CrossRefADSGoogle Scholar
  70. 70.
    M. Popov, “Raman and IR study of high-pressure atomic phase of nitrogen,” Phys. Lett. A, 334, 317–325 (2005).CrossRefADSGoogle Scholar
  71. 71.
    M. I. Eremets, A. G. Gavriliuk, N. R. Serebryanaya, I. A. Trojan, D. A. Dzivenko, R. Boehler, H.-k. Mao, and R. J. Hemley, “Structural transformation of molecular nitrogen to a single-bonded atomic state at high pressures,” J. Chem. Phys., 121, No. 22, 11296–11300 (2004).CrossRefADSGoogle Scholar
  72. 72.
    M. I. Eremets, A. G. Gavriliuk, and I. A. Trojan, “Single-crystalline polymeric nitrogen,” Appl. Phys. Lett., 90, Nos. 1–3, 171904 (2007).CrossRefADSGoogle Scholar
  73. 73.
    M. J. Lipp, J. P. Klepeis, B. J. Baer, et al., “Transformation of molecular nitrogen to nonmolecular phases at megabar pressures by direct laser heating,” Phys. Rev. B, 76, 014113 (1–5) (2007).CrossRefADSGoogle Scholar
  74. 74.
    A. F. Goncharov, J. C. Crowhurst, V. V. Struzhkin, and R. J. Hemley, “Triple point on the melting curve and polymorphism of nitrogen at high pressure,” Phys. Rev. Lett., 101, 095502 (1–4) (2008).CrossRefADSGoogle Scholar
  75. 75.
    X-Q. Chen, C. L. Fu, and R. Podloucky, “Bonding and strength of solid nitrogen in the cubic gauche (Cg-N) structure,” Phys Rev. B, 77, 064103 (1–6) (2008).CrossRefADSGoogle Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  1. 1.Institute of Chemical Kinetics and CombustionSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations