Combustion, Explosion, and Shock Waves

, Volume 45, Issue 3, pp 245–250 | Cite as

Dynamic behavior of splitting flames in a heated channel

  • A. Fan
  • S. S. Minaev
  • E. V. Sereshchenko
  • Y. Tsuboi
  • H. Oshibe
  • H. Nakamura
  • K. Maruta
Article

Abstract

Flame-propagation dynamics with dual peaks in a heated microchannel is predicted by employing a thermal-diffusive model taking into account two reactants. After auto-ignition, the flame immediately splits into two reaction fronts with different luminosities. One front propagates upstream, whereas the other moves downstream, and finally they both extinguish. After some delay, the process is repeated, and reignition of the fuel-air mixture is induced by hot walls. It is also shown that the commonly used infinitely thin reaction zone model, which has no reactant concentration dependence, is not capable of capturing this phenomenon. The splitting flame dynamics with dual fronts is confirmed by photographs taken with a high-speed digital video camera in experimental investigations with a propane-air mixture. The experiments reveal interesting details, namely, coexistence of triple reaction peaks during the process of propagation of splitting flames is observed, and the flame splitting phenomenon occurs twice in one extinction-ignition period.

Key words

microscale combustion splitting flames repetitive extinction and ignition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. C. Fennandez-Pello, “Micropower generation using combustion: issues and approaches,” in: Proc. Twenty-Ninth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (2002), pp. 883–899.Google Scholar
  2. 2.
    D. Dunn-Rankin, E. M. Leal, and D. C. Walther, “Personal power systems,” Prog. Energ. Combust. Sci., 31, 422–465 (2005).CrossRefGoogle Scholar
  3. 3.
    Ya. B. Zel’dovich, “Theory of the propagation limit for a quiet flame,” Zh. Èxper. Teor. Fiz., 11,No. 1, 159–168 (1941).Google Scholar
  4. 4.
    S. A. Lloyd and F. J. Weinberg, “A burner for mixtures of very low heat content,” Nature, No. 251, 47–49 (1974).Google Scholar
  5. 5.
    L. Sitzki, K. Borer, S. Wussow, E. Schuster, P. D. Ronney, and A. Cohen, “Combustion in microscale heatrecirculating burners,” AIAA Paper No. 2001-1087 (2001).Google Scholar
  6. 6.
    G. A. Fateev, O. S. Rabinovich, and M. A. Silenkov, “Oscillatory combustion of a gas mixture blow through a porous medium or a narrow tube,” Proc. Combust. Inst., 27, 3147–3153 (1998).Google Scholar
  7. 7.
    K. Maruta, J. K. Parc, K. C. Oh, T. Fujimori, S. S. Minaev, and R. V. Fursenko, “Characteristics of microscale combustion in a narrow heated channel,” Combust., Expl., Shock Waves, 40, No. 5, 516–523 (2004).CrossRefGoogle Scholar
  8. 8.
    S. Minaev, K. Maruta, and R. Fursenko, “Nonlinear dynamics of flame in a narrow channel with a temperature gradient,” Combust. Theory Model., 11, No. 2, 187 (2007).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    T. L. Jackson, J. Buckmaster, Z. Lu, D. C. Kyritsis, and L. Massa, “Flames in narrow circular tubes,” Proc. Combust. Inst., 31, 955–962 (2007).CrossRefGoogle Scholar
  10. 10.
    F. Richecoeur and D. C. Kyritsis, “Experimental study of flame stabilization in low Reynolds and Dean number flows in curved mesoscale ducts,” Proc. Combust. Inst., 30, 2419–2427 (2005).CrossRefGoogle Scholar
  11. 11.
    G. Pizza, C. E. Frouzakis, J. Mantzaras, A. G. Tomboulides, and K. Boulouchos, “Dynamics of premixed hydrogen/air flames in microchannels,” Combust. Flame, 152, 433–450 (2008).CrossRefGoogle Scholar
  12. 12.
    S. Kumar, K. Maruta, and S. Minaev, “Pattern formation of flames in radial microchannels with lean methane-air mixtures,” Proc. Combust. Inst., 31, 3261–3268 (2007).CrossRefGoogle Scholar
  13. 13.
    A. W. Fan, S. Minaev, S. Kumar, W. Liu, and K. Maruta, “Regime diagrams and characteristics of flame patterns in radial microchannels with temperature gradients,” Combust. Flame, 153, 479–489 (2008).CrossRefGoogle Scholar
  14. 14.
    A. W. Fan, S. Minaev, E. Sereshchenko, R. Fursenko, S. Kumar, W. Liu, and K. Maruta, “Experimental and numerical investigations of flame pattern formations in a radial microchannel,” Proc. Combust. Inst., 32, 3059–3066 (2009).CrossRefGoogle Scholar
  15. 15.
    C. K. Westbrook and F. L. Dryer, “Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames,” Combust. Sci. Technol., 27, 31–43 (1981).CrossRefGoogle Scholar
  16. 16.
    J. Buckmaster, “The structure and stability of laminar flame,” Annual Rev. Fluid Mech., 25, 21–53 (1993).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  • A. Fan
    • 1
    • 2
  • S. S. Minaev
    • 3
  • E. V. Sereshchenko
    • 3
  • Y. Tsuboi
    • 1
  • H. Oshibe
    • 1
  • H. Nakamura
    • 1
  • K. Maruta
    • 1
  1. 1.Institute of Fluid ScienceTohoku UniversitySendaiJapan
  2. 2.School of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhanChina
  3. 3.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations