Combustion, Explosion, and Shock Waves

, Volume 45, Issue 2, pp 211–217 | Cite as

Experimental investigation of gasless detonation in metal-sulfur compositions

  • F. -X. Jetté
  • S. Goroshin
  • A. J. Higgins
  • J. J. Lee
Article

Abstract

Samples of zinc-sulfur and manganese-sulfur mixtures are shocked using an explosive pentolite charge to investigate if a shock-initiated reaction is able to support continued shock wave propagation. Samples of two different nominal densities (62 and 86% of theoretical maximum density) are prepared as weakly confined cylinders 50 mm in diameter and are instrumented along their length (⩽280 mm) with sensitive piezoelectric pins. Experimental results showed that the shock wave transmitted into the sample by the explosive rapidly decays to an acoustic wave in all four sample types. Furthermore, in denser samples, the part of the sample farthest from the explosive is recovered intact and unreacted, which clearly indicates that the wave is unable to trigger reactions after 100 mm of travel along the sample. Thus, it is concluded that insufficient reaction energy is transmitted forward to the shock wave to prevent its decay as it travels along the sample.

Key words

gasless detonation shock wave zinc-sulfur mixture manganese-sulfur mixture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. B. Boslough, “A thermochemical model for shock-induced reactions (heat detonations) in solids,” J. Chem. Phys., 92, No. 3, 1839–1848 (1990).CrossRefADSGoogle Scholar
  2. 2.
    L. S. Bennett and Y. Horie, “Shock-induced inorganic reactions and condensed phase detonations,” Shock Waves, 4, 127–136 (1994).MATHCrossRefADSGoogle Scholar
  3. 3.
    W. Fickett and W. C. Davis, Detonation: Theory and Experiment, University of California Press (1979).Google Scholar
  4. 4.
    A. G. Merzhanov, Yu. A. Gordopolov, and V. S. Trofimov, “On the possibility of gasless detonation in condensed systems,” Shock Waves, 4, 157–159 (1996).CrossRefADSGoogle Scholar
  5. 5.
    N. N. Thadhani, “Shock-induced and shock-assisted solid-state chemical reactions in powder mixtures,” J. Appl. Phys., 76, No. 4, 2129–2138 (1994).CrossRefADSGoogle Scholar
  6. 6.
    J. Jiang, S. Goroshin, and J. H. S. Lee, “Shock wave induced chemical reaction in Mn + S mixture,” in: Proc. of the APS Shock Compression of Condensed Matter (1997), pp. 655–658.Google Scholar
  7. 7.
    J. H. S. Lee, S. Goroshin, A. Yoshinaka, M. Romano, J. Jiang, I. Hooton, and F. Zhang, “Attempts to initiate detonations in metal-sulphur mixtures,” in: Proc. of the APS Shock Compression of Condensed Matter (1999), pp. 775–778.Google Scholar
  8. 8.
    D. L. Gurév, Yu. A. Gordopolov, and S. S. Batsanov, “Solid-state synthesis of ZnTe in shock waves,” Combust., Expl., Shock Waves, 42, No. 1, 116–124 (2006).CrossRefGoogle Scholar
  9. 9.
    S. S. Batsanov and Yu. A. Gordopolov, “Solid-state detonation velocity limits,” Combust., Expl., Shock Waves, 43, No. 5, 587–589 (2007).CrossRefGoogle Scholar
  10. 10.
    L. G. Bolkhovitinov and S. S. Batsanov, “Theory of solid-state detonation,” Combust., Expl., Shock Waves, 43, No. 2, 219–221 (2007).CrossRefGoogle Scholar
  11. 11.
    D. L. Gur’ev, Yu. A. Gordopolov, S. S. Batsanov, A. G. Merzhanov, and V. E. Fortov, “Solid-state detonation in the zinc-sulfur system,” Appl. Phys. Lett., 88, 024102-1–024102-3 (2006).ADSGoogle Scholar
  12. 12.
    S. S. Batsanov, “An additive method for calculation of the sound velocity in porous materials,” Inorg. Mater., 43, No. 10, 1070–1072 (2007).CrossRefGoogle Scholar
  13. 13.
    A. Yu. Dolgoborodov, M. N. Makhov, I. V. Kolbanev, A. N. Streletskii, and V. E. Fortov, “Detonation in an aluminum-Teflon mixture,” JETP Lett., 81, No. 7, 311–314 (2005).CrossRefADSGoogle Scholar
  14. 14.
    W. Mock (Jr.) and W. H. Holt, “Impact initiation of rods of pressed polytetrafluoroethylene (PTFE) and aluminum powders,” in: Proc. of the APS Shock Compression of Condensed Matter (2005), pp. 1097–1100.Google Scholar
  15. 15.
    F. X. Jetté, S. Goroshin, and A. J. Higgins, “Shock reactivity of non-porous mixtures of manganese and sulfur,” in: Proc. of the APS Shock Compression of Condensed Matter (2007), pp. 1033–1036.Google Scholar
  16. 16.
    G. Asch, Les Capteurs en Instrumentation Industrielle, Dunod (1982).Google Scholar
  17. 17.
    M. L. Oelze, W. D. O’Brien (Jr.), and R. G. Darmody, “Measurement of attenuation and speed of sound in soils,” Soil Sci. Soc. Am. J., 66, 788–796 (2002).CrossRefGoogle Scholar
  18. 18.
    S. S. Batsanov, Effects of Explosions on Materials, Springer-Verlag (1994).Google Scholar
  19. 19.
    F. X. Jetté, S. Goroshin, and A. J. Higgins, “Timeresolved temperature measurements of shock initiation in a manganese-sulfur mixture,” in: Proc. of the APS Shock Compression of Condensed Matter (2007), pp. 1037–1040.Google Scholar

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  • F. -X. Jetté
    • 1
  • S. Goroshin
    • 1
  • A. J. Higgins
    • 1
  • J. J. Lee
    • 2
  1. 1.McGill UniversityMontréalCanada
  2. 2.DRDC-SuffieldRalstonCanada

Personalised recommendations