Soot Formation in Combustion Processes (Review)

  • Z. A. Mansurov
Article

Abstract

A review is given of recent papers on the phenomenology, kinetics, and mechanism of soot formation in hydrocarbon combustion; the effects of various factors on the formation of polycyclic aromatic hydrocarbons, fullerenes, and soot, low-temperature soot formation in cool flames, combustion in electric field, and the paramagnetism of soot particles from an ecological viewpoint are considered.

Key words

soot formation polycyclic aromatic hydrocarbons fullerenes combustion nanocarbon tubes 

REFERENCES

  1. 1.
    P. A. Tesner, Carbon Formation from Gas-Phase Hydrocarbons [in Russian], Khimiya, Moscow (1972).Google Scholar
  2. 2.
    H. Bockhorn, F. Fetting, and H. W. Wenz, “Investigation of the formation of high molecular hydrocarbons and soot in premixed hydrocarbon-oxygen flames,” Ber. Bunsen Ges. Phys. Chem., 87, 1067 (1983).Google Scholar
  3. 3.
    H. F. Calcote, “The role of ions in soot formation,” in: Abstracts of the III Int. Seminar on Flame Structure, Alma-Ata (1989).Google Scholar
  4. 4.
    P. A. Tesner. “Soot formation during combustion,” Combust., Expl., Shock Waves, 15, No.2. 111–119 (1979).Google Scholar
  5. 5.
    B. S. Haynes and H. Gg. Wagner, “Soot formation,” Prog. Energy Combust. Sci., 7, 229–273 (1981).CrossRefGoogle Scholar
  6. 6.
    H. Gg. Wagner “Soot formation in combustion,” in: 17th Symp. (Int.) on Combustion, Combustion Inst., Pittsburgh (1979), pp. 3–19.Google Scholar
  7. 7.
    S. C. Graham, “The collisional growth of soot particles at high temperatures,” in: 16th Symp. (Int.) on Combustion, Combustion Inst., Pittsburgh (1977), pp. 663–669.Google Scholar
  8. 8.
    K. H. Homann and H. G. Wagner, “Some aspects of soot formation,” in: J. Ray Bowen (ed.), Dynamics of Exothermicity, Combust. Sci. and Technol. Book Series, Vol. 2, Gordon and Breach (1996), pp. 151–184.Google Scholar
  9. 9.
    I. Glassman, “Soot formation in combustion processes,” in: 22nd Symp. (Int). on Combustion, Combustion Inst., Pittsburgh (1988), pp. 295–311.Google Scholar
  10. 10.
    J. B. Howard, “Carbon addition and oxidation reactions in heterogeneous combustion and soot formation,” in: 23rd Symp. (Int.) on Combustion, Combustion Inst., Pittsburgh (1991), pp. 1107–1127.Google Scholar
  11. 11.
    H. Bockhorn (ed.), Soot Formation in Combustion, Round Table Discussion, Springer Verlag, Heidelberg (1991).Google Scholar
  12. 12.
    M. Bonig, C. Feldermann, H. Jander, et al., “Soot formation in premixed C2H2 flat flames at elevated pressure,” in: 23rd Symp. (Int.) on Combustion, Combustion Inst., Pittsburgh (1991), p. 1581.Google Scholar
  13. 13.
    M. Frenklach, D. W. Clary, W. C. Gardiner, and S. E. Stein, “Effect of fuel structure on pathways to soot,” in: 21st Symp. (Int.) on Combustion, Combustion Inst., Pittsburgh (1986), p. 67.Google Scholar
  14. 14.
    I. M. Khan, “Formation and combustion of carbon in a diesel engine,” Inst. Mech. Eng. Proc., 184, Part 35, 36–43 (1969).Google Scholar
  15. 15.
    N. A. Henein, “Analysis of pollutant formation and control and fuel economy in diesel engines,” Prog. Energy Combust. Sci., Vol. 1, 165–207 (1976).CrossRefGoogle Scholar
  16. 16.
    N. Petereit, Untersuchung des Russwachstums in orgemischten atmospharischen Ethen-Flammen, Dissertation, Gettingen (1992).Google Scholar
  17. 17.
    J. Warnatz, U. Mass, and R. W. Dibble, Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Springer, Berlin-New York (2001).MATHGoogle Scholar
  18. 18.
    H. Bohm, M. Bonig, C. Felderman, et al., “Pressure dependence of formation of soot and PAH in premixed flames,” in: H. Bockhorn (ed.), Soot Formation in Combustion, Springer Series in Chemical Physics, Vol. 59, Springer Verlag, Berlin (1994), pp. 145–164.Google Scholar
  19. 19.
    H. W. Kroto, J. R. Heath, S. C. O'Brien, et al., “C60: Buckminsterfullerene,” Nature, 318, 162–163 (1985).CrossRefADSGoogle Scholar
  20. 20.
    P. Gerhardt, S. Loffler, and K. H. Homann, “The formation of polyhedral carbon ions in fuel-rich acetylene and benzene flames,” in: 22nd Symp. (Int.) on Combustion, Combustion Inst., Pittsburgh (1988), pp. 395–401.Google Scholar
  21. 21.
    J. B. Howard, J. T. McKinnon, Y. Makarovsky, et al., “Fullerenes C60 and C70 in flames,” Nature, 352, 139–141 (1991).CrossRefADSGoogle Scholar
  22. 22.
    J. B. Howard, “Combustion synthesis of fullerenes and fullerenic nanomaterials for large-scale applications,” in: Abstracts of Int. Conf. on Carbon (2004), p. 57.Google Scholar
  23. 23.
    J. B. Howard, “Fullerenes formation in flames,” in: 24nd Symp. (Int.) on on Combustion, Combustion Inst., Pittsburgh (1992), pp. 993–946.Google Scholar
  24. 24.
    H. Richter, A. J. Labrocca, W. J. Grieco, et al., “Generation of higher fullerenes in flames,” J. Phys. Chem. B, 101, 1556–1560 (1997).CrossRefGoogle Scholar
  25. 25.
    M. Frenklach and L. B. Ebert, “Comment on the proposed role of spheroidal carbon clusters in soot formation,” J. Phys. Chem., 92, 561–563 (1988).CrossRefGoogle Scholar
  26. 26.
    Q. L. Zhang, S. C. O'Brien, J. R. Heath, et al., “Reactivity of large carbon clusters: Spheroidal carbon shells and their possible relevance to the formation and morphology of soot,” J. Phys. Chem., 90, 525–528 (1990).CrossRefGoogle Scholar
  27. 27.
    K. D. Chowdhury, J. B. Howard, and J. B. Vander Sande, “Fullerenic nanostructures in flames,” J. Mater. Res., 11, 341–347 (1996).ADSGoogle Scholar
  28. 28.
    W. J. Grieco, A. L. Lafleur, K. C. Lafleur, et al., “Fullerenes and PAH in low-pressure premixed benzene/oxygen flames,” in: 27th Symp. (Int.) on Combustion, Combustion Inst., Pittsburgh (1998), pp. 1669–1675.Google Scholar
  29. 29.
    D. Ugarte, “High-temperature behavior of fullerene black,” Carbon, 32, 1245–1248 (1994).CrossRefGoogle Scholar
  30. 30.
    W. J. Grieco, J. B. Howard, L. C. Rainey, and J. B. Vander Sande, “Fullerenic carbon in combustion-generated soot,” Carbon, 38, 597–614 (2000).CrossRefGoogle Scholar
  31. 31.
    A. L. Lafleur, J. B. Howard, K. Taghizadeh, et al., “Identification of C30H10 dicy-dopentapyrenes in flames: Correlation with corannulene and fullerene formation,” J. Phys. Chem., 100, 17421–17428 (1996).CrossRefGoogle Scholar
  32. 32.
    A. L. Lafleur, J. B. Howard, J. A. Marr, and T. Yadav, “Proposed fullerene precursor corannulene identified in flames both in the presence and absence of fullerene production,” J. Phys. Chem., 97, 13539–13543 (1993).CrossRefGoogle Scholar
  33. 33.
    C. J. Pope and J. B. Howard, “Further testing of the fullerene formation mechanism with predictions of temperature and pressure trends,” in: 25th Symp. (Int.) on Combustion, Combustion Inst., Pittsburgh (1994), pp. 671–678.Google Scholar
  34. 34.
    T. Baum, P. Loffler, P. Weilmunster, and K.-H. Weilmunster, “Fullerene ions and their relation to PAH and soot in low-pressure hydrocarbon flames,” Ber. Bunsenges Phys. Chem., 96, 841–857 (1992).Google Scholar
  35. 35.
    M. Bachmann, W. Wiese, K.-H. Homann, “Fullerenes versus soot in benzene flames,” Combust. Flame, 101, 548–550 (1995).CrossRefGoogle Scholar
  36. 36.
    J. Ahrens, R. Kovacs, E. A. Shafranovskii, and K.-H. Homann, “Online multi-photon ionization mass spectrometry applied to PAH and fullerenes in flames,” Ber. Bunsenges Phys. Chem., 98, 265–268 (1994).Google Scholar
  37. 37.
    J. Ahrens, M. Bachmann, T. Baum, et al., “Fullerenes and their ions in hydrocarbon flames,” Int. J. Mass Spectrom. Ion Process., 138, 133–148 (1994).CrossRefGoogle Scholar
  38. 38.
    M. Bachmann, W. Wiese, and K.-H. Homann, “PAH and aromers: precursors of fullerenes and soot,” in: 26th Symp. (Int.) on Combustion, Combustion Inst., Pittsburgh (1996), pp. 2259–2267.Google Scholar
  39. 39.
    A. J. Stone and D. J. Wales, “Theoretical studies of icosahedral C60 and some related species,” Chem. Phys. Lett., 128, 501–503 (1986).CrossRefADSGoogle Scholar
  40. 40.
    L. T. Scott, “Particles of fullerenes: novel syntheses, structures, and reactions,” Pure Appl. Chem., 68, 291–300 (1996).Google Scholar
  41. 41.
    J. T. McKinnon, W. Bell, and R. M. Barkley, “Combustion synthesis of fullerenes,” Combust. Flame, 88, 102–112 (1992).CrossRefGoogle Scholar
  42. 42.
    L. Yuan, K. Saito, C. Pan, et al., “Nanotubes from methane flames,” Chem. Phys. Lett., 340, 237–241 (2001).CrossRefADSGoogle Scholar
  43. 43.
    L. Yuan, K. Saito, W. Hu, and Z. Chen, “Ethylene flame synthesis of well-aligned multiwalled carbon nanotubes,” Chem. Phys. Lett., 346, 23–28 (2001).CrossRefADSGoogle Scholar
  44. 44.
    R. L. Vander Wal, T. M. Ticich, and V. E. Curtis, “Substrate-support interactions in metal-catalyzed carbon nanofiber growth,” Carbon, 39, 2277–2289 (2001).CrossRefGoogle Scholar
  45. 45.
    R. L. Vander Wal, L. J. Hall, and G. M. Berber, “Optimization of flame synthesis for carbon nanotubes using supported catalyst,” J. Phys. Chem. B, 106, 13122–13132 (2002).CrossRefGoogle Scholar
  46. 46.
    R. L. Vander Wal, “Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment,” Combust. Flame, 130, 37–47 (2002).CrossRefGoogle Scholar
  47. 47.
    A. V. Saveliev, W. Merchan-Merchan, and L. A. Kennedy, “Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame,” Combust. Flame, 135, 27–33 (2003).CrossRefGoogle Scholar
  48. 48.
    L. Yuan, T. Li, and K. Sano, “Synthesis of multi walled carbon nanotubes using methane/air diffusion flames,” Proc. Combust. Inst., 29, 1087–1092 (2002).Google Scholar
  49. 49.
    W. Merchan-Merchan, A. V. Saveliev, and L. A. Kennedy, “High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control,” Carbon, 42, 599–608 (2004).CrossRefGoogle Scholar
  50. 50.
    G. W. Lee, J. Jurng, and J. Hwang, “Formation of Ni-catalyzed multiwalled carbon nanotubes and nanofibers on a substrate using an ethylene inverse diffusion flame,” Combust. Flame, 139, 167–175 (2004).CrossRefGoogle Scholar
  51. 51.
    C. S. Mcneally, U. O. Koyliu, L. D. Pfefferle, and D. F. Rosner, “Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples,” Combust. Flame, 109, 701–720 (1997).CrossRefGoogle Scholar
  52. 52.
    T. Flesch, C. McCarthy, A. Basn, et al., “A new pure diesel technology: Demonstration of ULEV emissions on a navistar diesel engine fueled with dimethyl ether,” in: Proc. of the Int. Congress and Exposition, Detroit, Feb. 27–Mar. 2 (1995), SAE Paper 950061.Google Scholar
  53. 53.
    P. A. Tesner and S. V. Shurupov, “Some physicochemical parameters of soot formation during pyrolysis of methane and methane-benzene mixtures,” Proc. Combust. Inst., 25, 653–659 (1994).Google Scholar
  54. 54.
    P. A. Tesner and S. V. Shurupov, “Some physicochemical parameters of soot formation during pyrolysis of hydrocarbons,” Combust. Sci. Technol., 105, 147–161 (1995).Google Scholar
  55. 55.
    P. A. Tesner and S. V. Shurupov, “Soot formation during pyrolysis of naphthalene, anthracene, and pyrene,” Combust. Sci. Technol., 126, 139–152 (1997).Google Scholar
  56. 56.
    S. V. Shurupov and P. A. Tesner, “Soot formation during isothermal pyrolysis of carbon tetrachloride and methane-carbon tetrachloride mixture,” Proc. Combust. Inst., 27, 1581–1588 (1998).Google Scholar
  57. 57.
    S. V. Shurupov, “Particulate carbon formation from hydrocarbon mixtures,” Exp. Therm. Fluid Sci., 21, 26–32 (2000).CrossRefGoogle Scholar
  58. 58.
    S. V. Shurupov, “Some factors that govern particulate carbon formation during pyrolysis of hydrocarbons,” Proc. Combust. Inst., 28, 2507–2514 (2000).CrossRefGoogle Scholar
  59. 59.
    K.-H. Homman and H. G. Wagner, “Some new aspects of the mechanism of carbon formation in premixed flames,” in: 11th Symp. (Int.) on Combustion, Combustion Inst., Pittsburgh (1967), pp. 371–379.Google Scholar
  60. 60.
    S. E. Stein and A. Fank, “High temperature stabilities of hydrocarbons,” J. Phys. Chem., 89, 3714–3725 (1985).CrossRefGoogle Scholar
  61. 61.
    J. A. Miller and C. E. Melius, “Kinetics and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels,” Combust. Flame, 91, 21–39 (1992).CrossRefGoogle Scholar
  62. 62.
    N. M. Marinov, W. J. Pitz, and C. K. Westbrook, “The formation of aromatics and PAH's in laminar flames,” in: Joint of Meeting of the British, German and Franch Sections (1999), p. 7.Google Scholar
  63. 63.
    C. E. Edwards and P. J. Goix, “Effect of fuel gas composition and excess air on VOC emissions from technology,” Combust. Sci. Technol., 116–117 (1996), p. 375.Google Scholar
  64. 64.
    DOE/PERF Burner Data. (1997).Google Scholar
  65. 65.
    P. A. Vlasov and W. Warnatz, “Kinetic simulation of soot formation by pyrolysis of various aliphatic and aromatic hydrocarbon in shock tubes,” Khim. Fiz., 23, No.10, 39–46 (2004).Google Scholar
  66. 66.
    B. A. Urmashev, T. T. Mashan, B. Ya. Kolesnikov, and Z. A. Mansurov, “Experimental and theoretical investigation of low temperature PAH and soot formation on hydrocarbon flames,” in: 18th Int. Colloquium on the Dynamics of Explosions and Reactive Systems, Seattle (2001).Google Scholar
  67. 67.
    A. V. Krestinin, M. B. Kislov, A. V. Raevskii, et al., “On the formation mechanism of soot particles,” Kinet. Katal., No. 1, 102–111 (2000).Google Scholar
  68. 68.
    H. Richter and J. B. Howard, “Formation of polycyclic aromatic hydrocarbons and their growth to soot — a review of chemical reaction pathways,” Prog. Energy Combust. Sci., 26, 565–608 (2000).CrossRefGoogle Scholar
  69. 69.
    J. B. Howard, “Carbon addition and oxidation reactions in heterogeneous combustion and soot formation,” Proc. Combust. Inst., 23, 1107–1127 (1990).Google Scholar
  70. 70.
    M. Frenklach, “Reaction mechanism of soot formation in flames,” J. Phys. Chem. Chem. Phys., 4, 2027–2037 (2002).Google Scholar
  71. 71.
    S. J. Harris and A. M. Weiner, “A picture of soot particle inception,” Proc. Combust. Inst., 22, 333–342 (1988).Google Scholar
  72. 72.
    T. G. Benish, A. L. Lafleur, K. Taghizadeh, and J. B. Howard, “C2H2 and PAH as soot growth reactants in premixed C2H4-air flames,” Proc. Combust. Inst., 26, 2319–2326 (1996).Google Scholar
  73. 73.
    S. Macadam, J. M. Beer, and A. B. Hoffmann, “Soot surface growth by polycyclic aromatic hydrocarbon and acetylene addition,” ibid., pp. 2295–2302.Google Scholar
  74. 74.
    A. Kazakov and M. Frenklach, “On the relative contribution of acetylene and aromatics to soot particle surface growth,” Combust. Flame, 112, 270–274 (1998).CrossRefGoogle Scholar
  75. 75.
    A. Ciajolo, R. Barbella, A. Tregrossi, and L. Bonfanti, “Spectroscopic and compositional signatures of PAH-loaded mixtures in the soot inception region of a premixed ethylene flame,” Proc. Combust. Inst., 27, 1481–1487 (1998).Google Scholar
  76. 76.
    W. J. Grieco, J. B. Howard, L. C. Rainey, J. B. Vander Sande. “Fullerenic carbon in combustion-generated soot,” Carbon, 38, 597–614 (2000).CrossRefGoogle Scholar
  77. 77.
    L. G. Blevins, R. A. Fletcher, B. A. Benner, et al., “The existence of young soot in the exhaust of inverse diffusion flames,” Proc. Combust. Inst., 29, 2325–2333 (2002).Google Scholar
  78. 78.
    K.-H. Homann and H. Gg. Wagner, “Some new aspects of the mechanism of carbon formation in premixed flames,” Proc. Combust. Inst., 11, 371–379 (1967).Google Scholar
  79. 79.
    H. Richter, S. Granata, W. H. Green, and J. B. Howard, “Detailed modeling of PAH and soot formation in laminar preliminary mixture benzene/oxygen/argon at low pressure flame,” Proc. Combust. Inst., 30, 1397–1405 (2004).CrossRefGoogle Scholar
  80. 80.
    H. Wang and M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame, 110, 173–221 (1997).CrossRefGoogle Scholar
  81. 81.
    H. Richter, W. J. Grieco, and J. B. Howard, “Formation mechanism of polycyclic aromatic hydrocarbons and fullerenes in premixed benzene flames,” Combust. Flame, 119, 1–22 (1999).CrossRefGoogle Scholar
  82. 82.
    M. Frenklach and H. Wang, “Detailed mechanism and modelling of soot particle formation, soot formation in combustion, mechanism and models,” in: H. Bakhorn (ed.), Soot Formation in Combustion, Springer Series in Chemical Physics, Vol. 59, Springer Verlag, Berlin (1994), p. 165.Google Scholar
  83. 83.
    C. J. Pope and J. B. Howard, “Simultaneous particle and molecule modeling (SPAMM): An approach for combining sectional aerosol equations and elementary gas-phase reactions,” Aerosol Sci. Technol., 27, 73–94 (1997).Google Scholar
  84. 84.
    A. Krestinin, “Polyyne model of soot formation process,” Proc. Combust. Inst., 27, 1557–1563 (1998).Google Scholar
  85. 85.
    R. J. Hall, M. D. Smooke, and M. B. Colket, “Predictions of soot dynamics on opposed jet diffusion flames” in: F. L. Dryer and R. F. Sawyer (eds.), Physical and Chemical Aspects of Combustion. A Tribute to Irvin Glassman, in: F. L. Dryer and R. F. Sawyer (eds.), Combustion Science and Technology Book Series, Vol. 4, Gordon and Breach, Amsterdam (1997), p. 189.Google Scholar
  86. 86.
    J.-B. Donnet, R. C. Bansal, and M.-J. Wang, Carbon Black: Science and Technology, Second ed., Dekker, New York (1993).Google Scholar
  87. 87.
    A. L. Lafleur, K. Taghizadeh, J. B. Howard, et al., “Characterization of flame-generated C10 to C160 polycyclic aromatic hydrocarbons by atmospheric pressure chemical ionization mass spectrometry with liquid introduction via heated nebulizer interface,” J. Amer. Soc. Mass Spectrom., 7, 276–286 (1996).CrossRefGoogle Scholar
  88. 88.
    J. T. McKinnon and J. B. Howard, “The roles of PAH and acetylene in soot nucleation and growth,” Proc. Combust. Inst., 24, 965–971 (1992).Google Scholar
  89. 89.
    W. J. Grieco, A. L. Lafleur, K. C. Swallow, et al., “Fullerenes and PAH in low-pressure premixed benzene/oxygen flames,” Proc. Combust. Inst., 27, 1669–1675 (1998).Google Scholar
  90. 90.
    A. Goel, P. Hebgen, J. B. Vander Sande, and J. B. Howard, “Combustion synthesis of fullerenes and fullerenic nanostructures,” Carbon, 40, 177–182 (2002).CrossRefGoogle Scholar
  91. 91.
    B. L. Wersborg, J. B. Howard, G. C. Williams, “Physical mechanisms in carbon formation in flames,” in: 14th Symp. (Int.) Combustion, Combustion Inst., Pittsburgh (1973), p. 929.Google Scholar
  92. 92.
    U. Bonne, K. H. Homann, and H. Gg. Homann, “Carbon formation in premixed flames,” Proc. Combust. Inst., 10, 503–512 (1965).Google Scholar
  93. 93.
    V. Ya. Shtern, Mechanism of Gas Phase Oxidation of Hydrocarbons [in Russian], Izd. Akad. Nauk SSSR, Moscow (1960).Google Scholar
  94. 94.
    M. D. Pogosyan, T. G. Simonyan, S. D. Arsentev, A. A. Mantashyan, Mechanism of Heat Release and Accumulation of Radicals in Cool-Flame and High-Temperature Oxidation of Propane [in Russian], Inst. of Theor. and Appl. Mech., Novosibirsk (1988).Google Scholar
  95. 95.
    H. Bohm, D. Hesse, H. Jander, et al., “The influence of pressure and temperature on soot formation in premixed flames,” in: 22nd Symp. (Int.) on Combustion, Combustion Inst., Pittsburgh (1988), pp. 403–411.Google Scholar
  96. 96.
    Z. A. Mansurov, “Combustion, detonation, shock waves,” in: Proc. of the Zeldovich Memorial, Vol. 2 (1994), pp. 51–54.Google Scholar
  97. 97.
    Z. A. Mansurov, A. A. Merkulov, V. T. Popov, et al., “Formation of ultrafine soot in methane combustion in electric field,” in: Khim. Tverd. Topliva, No. 3, 83–86 (1994,).Google Scholar
  98. 98.
    Z. A. Mansurov, B. K. Tuleutaev, V. T. Popov, et al., “Soot formation in low-temperature combustion of methane,” Combust., Expl., Shock Waves, 27, No.1, 42–45 (1991).CrossRefGoogle Scholar
  99. 99.
    Z. A. Mansurov, “Cool sooting flames of hydrocarbons,” J. Thermal Sci., 10, No.3, 269–280 (2001).ADSGoogle Scholar
  100. 100.
    Z. A. Mansurov, V. I. Pesterev, et al. “On polycyclic aromatic hydrocarbon formation in the sooty flames of methane and propane,” Arch. Combust., 10, Nos. 1–4, 209–215 (1990).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Z. A. Mansurov
    • 1
  1. 1.Al-Farabi Kazakh National State UniversityAlmatyKazakhstan

Personalised recommendations