Advertisement

Activation of the G Protein-Coupled Estrogen Receptor (GPER) Increases Neurogenesis and Ameliorates Neuroinflammation in the Hippocampus of Male Spontaneously Hypertensive Rats

  • Julieta Correa
  • Santiago Ronchetti
  • Florencia Labombarda
  • Alejandro F. De Nicola
  • Luciana PietraneraEmail author
Original Research
  • 58 Downloads

Abstract

It is known that spontaneously hypertensive rats (SHR) present a marked encephalopathy, targeting vulnerable regions such as the hippocampus. Abnormalities of the hippocampus of SHR include decreased neurogenesis in the dentate gyrus (DG), partial loss of neurons in the hilus of the DG, micro and astrogliosis and inflammation. It is also known that 17β-estradiol (E2) exert neuroprotective effects and prevent hippocampal abnormalities of SHR. The effects of E2 may involve a variety of mechanisms, including intracellular receptors of the ERα and ERβ subtypes or membrane-located receptors, such as the G protein-coupled estradiol receptor (GPER). We have now investigated the protective role of GPER in SHR employing its synthetic agonist G1. To accomplish this objective, 5 month-old male SHR received 150 μg/day of G1 during 2 weeks. At the end of this period, we analyzed neuronal progenitors by staining for doublecortin (DCX), and counted the number of glial fibrillary acidic protein (GFAP)-labeled astrocytes and Iba1-stained microglial cells by computerized image analysis. We found that G1 activation of GPER increased DCX+ cells in the DG and reduced GFAP+ astrogliosis and Iba1+ microgliosis in the CA1 region of hippocampus. We also found that the high expression of proinflammatory makers IL1β and cyclooxygenase 2 (COX2) of SHR was decreased after G1 treatment, which correlated with a change of microglia phenotype from the activated to a resting morphology. Additionally, G1 treatment increased the anti-inflammatory factor TGFβ in SHR hippocampus. Altogether, our results suggest that activation of GPER plays a neuroprotective role on the encephalopathy of SHR, an outcome resembling E2 effects but avoiding secondary effects of the natural hormone.

Keywords

GPER Estrogens Hippocampus Hypertension Neurogenesis 

Notes

Acknowledgements

This work was supported by grants from the Ministry of Science and Technology-Agencia Nacional de Promoción Científica y Tecnológica (PICT 2012-0009 and PICT 2012-0820), the National Research Council of Argentina (PIP 112 20170100002CO), the University of Buenos Aires (Ubacyt 20020170100224BA).

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis was performed by JC and SR. FL and AFDN have made substantial contributions to the analysis and interpretation of data and revised the manuscript critically for important intellectual content. The first draft of the manuscript was written by LP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding

These funding sources did not have a role in the collection, analysis and interpretation of data, nor in the writing of the report and the decision to submit the paper for publication.

Compliance with Ethical Standards

Conflict of interest

The authors report that they have no conflict of interest.

References

  1. Al Sweidi S, Sanchez MG, Bourque M, Morissette M, Dluzen D, Di Paolo T (2012) Oestrogen receptors and signalling pathways: implications for neuroprotective effects of sex steroids in Parkinson’s disease. J Neuroendocrinol 24:48–61.  https://doi.org/10.1111/j.1365-2826.2011.02193.x CrossRefPubMedGoogle Scholar
  2. Arevalo MA, Azcoitia I, Gonzalez-Burgos I, Garcia-Segura LM (2015) Signaling mechanisms mediating the regulation of synaptic plasticity and memory by estradiol. Horm Behav 74:19–27CrossRefGoogle Scholar
  3. Arruda-Carvalho M, Sakaguchi M, Akers KG, Josselyn SA, Frankland PW (2011) Posttraining ablation of adult-generated neurons degrades previously acquired memories. J Neurosci 31:15113–15127.  https://doi.org/10.1523/JNEUROSCI.3432-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Avolio E et al (2018) Role of brain neuroinflammatory factors on hypertension in the spontaneously hypertensive rat. Neuroscience 375:158–168.  https://doi.org/10.1016/j.neuroscience.2018.01.067 CrossRefPubMedGoogle Scholar
  5. Azcoitia I, Arevalo MA, De Nicola AF, Garcia-Segura LM (2011) Neuroprotective actions of estradiol revisited. Trends Endocrinol Metab 22:467–473CrossRefGoogle Scholar
  6. Belo NO, Silva-Barra J, Carnio EC, Antunes-Rodrigues J, Gutkowska J, Dos Reis AM (2004) Involvement of atrial natriuretic peptide in blood pressure reduction induced by estradiol in spontaneously hypertensive rats. Regul Pept 117:53–60CrossRefGoogle Scholar
  7. Blasko E et al (2009) Beneficial role of the GPR30 agonist G-1 in an animal model of multiple sclerosis. J Neuroimmunol 214:67–77.  https://doi.org/10.1016/j.jneuroim.2009.06.023 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bourque M, Dluzen DE, Di Paolo T (2012) Signaling pathways mediating the neuroprotective effects of sex steroids and SERMs in Parkinson’s disease. Front Neuroendocrinol 33:169–178CrossRefGoogle Scholar
  9. Brailoiu E et al (2007) Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. J Endocrinol 193:311–321.  https://doi.org/10.1677/JOE-07-0017 CrossRefPubMedGoogle Scholar
  10. Brinton RD (2008) The healthy cell bias of estrogen action: mitochondrial bioenergetics and neurological implications. Trends Neurosci 31:529–537CrossRefGoogle Scholar
  11. Briz V, Liu Y, Zhu G, Bi X, Baudry M (2015) A novel form of synaptic plasticity in field CA3 of hippocampus requires GPER1 activation and BDNF release. J Cell Biol 210:1225–1237.  https://doi.org/10.1083/jcb.201504092 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brocca ME, Pietranera L, Beauquis J, De Nicola AF (2013) Estradiol increases dendritic length and spine density in CA1 neurons of the hippocampus of spontaneously hypertensive rats: a Golgi impregnation study. Exp Neurol 247:158–164.  https://doi.org/10.1016/j.expneurol.2013.04.007 CrossRefPubMedGoogle Scholar
  13. Brocca ME, Pietranera L, de Kloet ER, De Nicola AF (2019) Mineralocorticoid receptors, neuroinflammation and hypertensive encephalopathy. Cell Mol Neurobiol 39:483–492.  https://doi.org/10.1007/s10571-018-0610-9 CrossRefPubMedGoogle Scholar
  14. Cao X et al (2013) Astrocytic adenosine 5′-triphosphate release regulates the proliferation of neural stem cells in the adult hippocampus. Stem Cells 31:1633–1643.  https://doi.org/10.1002/stem.1408 CrossRefPubMedGoogle Scholar
  15. Correa J, Labombarda F, Roig P, Lima A, De Nicola A, Pietranera L (2017) Effects of estrogen membrane receptor GPR30 agonist on hippocampal astrogliosis and microgliosis of spontaneously hypertensive rats. In: Joint meeting of bioscience societies, Buenos Aires, Argentina, 2017, vol 1, pp 165Google Scholar
  16. Day NL, Floyd CL, D’Alessandro TL, Hubbard WJ, Chaudry IH (2013) 17beta-estradiol confers protection after traumatic brain injury in the rat and involves activation of G protein-coupled estrogen receptor 1. J Neurotrauma 30:1531–1541.  https://doi.org/10.1089/neu.2013.2854 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Deng W, Saxe MD, Gallina IS, Gage FH (2009) Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci 29:13532–13542.  https://doi.org/10.1523/JNEUROSCI.3362-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dinh QN, Young MJ, Evans MA, Drummond GR, Sobey CG, Chrissobolis S (2016) Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Res 1637:146–153.  https://doi.org/10.1016/j.brainres.2016.02.034 CrossRefPubMedGoogle Scholar
  19. Duarte-Guterman P, Lieblich SE, Chow C, Galea LA (2015) Estradiol and GPER activation differentially affect cell proliferation but not GPER expression in the hippocampus of adult female rats. PLoS ONE 10:e0129880.  https://doi.org/10.1371/journal.pone.0129880 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ekdahl CT (2012) Microglial activation—tuning and pruning adult neurogenesis. Front Pharmacol 3:41.  https://doi.org/10.3389/fphar.2012.00041 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Engler-Chiurazzi EB, Singh M, Simpkins JW (2016) From the 90s to now: a brief historical perspective on more than two decades of estrogen neuroprotection. Brain Res 1633:96–100CrossRefGoogle Scholar
  22. Fuente-Martin E et al (2013) Estrogen, astrocytes and the neuroendocrine control of metabolism. Rev Endocr Metab Disord 14:331–338.  https://doi.org/10.1007/s11154-013-9263-7 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gingerich S, Kim GL, Chalmers JA, Koletar MM, Wang X, Wang Y, Belsham DD (2010) Estrogen receptor alpha and G-protein coupled receptor 30 mediate the neuroprotective effects of 17beta-estradiol in novel murine hippocampal cell models. Neuroscience 170:54–66.  https://doi.org/10.1016/j.neuroscience.2010.06.076 CrossRefPubMedGoogle Scholar
  24. Hammond R, Mauk R, Ninaci D, Nelson D, Gibbs RB (2009) Chronic treatment with estrogen receptor agonists restores acquisition of a spatial learning task in young ovariectomized rats. Horm Behav 56:309–314.  https://doi.org/10.1016/j.yhbeh.2009.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Handa RJ, Ogawa S, Wang JM, Herbison AE (2012) Roles for oestrogen receptor beta in adult brain function. J Neuroendocrinol 24:160–173CrossRefGoogle Scholar
  26. Hein AM, O’Banion MK (2009) Neuroinflammation and memory: the role of prostaglandins. Mol Neurobiol 40:15–32.  https://doi.org/10.1007/s12035-009-8066-z CrossRefPubMedPubMedCentralGoogle Scholar
  27. Herrick SP, Waters EM, Drake CT, McEwen BS, Milner TA (2006) Extranuclear estrogen receptor beta immunoreactivity is on doublecortin-containing cells in the adult and neonatal rat dentate gyrus. Brain Res 1121:46–58CrossRefGoogle Scholar
  28. Isgor C, Watson SJ (2005) Estrogen receptor alpha and beta mRNA expressions by proliferating and differentiating cells in the adult rat dentate gyrus and subventricular zone. Neuroscience 134:847–856CrossRefGoogle Scholar
  29. Jazbutyte V et al (2008) Ligand-dependent activation of ERβ lowers blood pressure and attenuates cardiac hypertrophy in ovariectomized spontaneously hypertensive rats. Cardiovasc Res 77:774–781CrossRefGoogle Scholar
  30. Jesmin S et al (2004) Gonadal hormones and frontocortical expression of vascular endothelial growth factor in male stroke-prone, spontaneously hypertensive rats, a model for attention-deficit/hyperactivity disorder. Endocrinology 145:4330–4343CrossRefGoogle Scholar
  31. Kastenberger I, Schwarzer C (2014) GPER1 (GPR30) knockout mice display reduced anxiety and altered stress response in a sex and paradigm dependent manner. Horm Behav 66:628–636.  https://doi.org/10.1016/j.yhbeh.2014.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kempermann G, Gast D, Gage FH (2002) Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 52:135–143CrossRefGoogle Scholar
  33. Kim J, Szinte JS, Boulware MI, Frick KM (2016) 17beta-estradiol and agonism of G-protein-coupled estrogen receptor enhance hippocampal memory via different cell-signaling mechanisms. J Neurosci 36:3309–3321.  https://doi.org/10.1523/JNEUROSCI.0257-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kiyota T, Ingraham KL, Swan RJ, Jacobsen MT, Andrews SJ, Ikezu T (2012) AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP + PS1 mice. Gene Ther 19:724–733.  https://doi.org/10.1038/gt.2011.126 CrossRefPubMedGoogle Scholar
  35. Kosaka Y, Quillinan N, Bond C, Traystman R, Hurn P, Herson P (2012) GPER1/GPR30 activation improves neuronal survival following global cerebral ischemia induced by cardiac arrest in mice. Transl Stroke Res 3:500–507.  https://doi.org/10.1007/s12975-012-0211-8 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kronenberg G, Lippoldt A, Kempermann G (2007) Two genetic rat models of arterial hypertension show different mechanisms by which adult hippocampal neurogenesis is increased. Dev Neurosci 29:124–133CrossRefGoogle Scholar
  37. Kuzumaki N et al (2010) Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice. Synapse 64:721–728.  https://doi.org/10.1002/syn.20800 CrossRefPubMedGoogle Scholar
  38. Labombarda F, Gonzalez SL, Lima A, Roig P, Guennoun R, Schumacher M, de Nicola AF (2009) Effects of progesterone on oligodendrocyte progenitors, oligodendrocyte transcription factors, and myelin proteins following spinal cord injury. Glia 57:884–897.  https://doi.org/10.1002/glia.20814 CrossRefPubMedGoogle Scholar
  39. Lecrux C, Nicole O, Chazalviel L, Catone C, Chuquet J, MacKenzie ET, Touzani O (2007) Spontaneously hypertensive rats are highly vulnerable to AMPA-induced brain lesions. Stroke 38:3007–3015.  https://doi.org/10.1161/STROKEAHA.107.491126 CrossRefPubMedGoogle Scholar
  40. Li Y, Liu J, Gao D, Wei J, Yuan H, Niu X, Zhang Q (2016) Agerelated changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats. Mol Med Rep 13:2552–2560CrossRefGoogle Scholar
  41. Lu D et al (2016) Activation of G protein-coupled estrogen receptor 1 (GPER-1) ameliorates blood–brain barrier permeability after global cerebral ischemia in ovariectomized rats. Biochem Biophys Res Commun 477:209–214.  https://doi.org/10.1016/j.bbrc.2016.06.044 CrossRefPubMedGoogle Scholar
  42. Mathieu P, Piantanida AP, Pitossi F (2010) Chronic expression of transforming growth factor-beta enhances adult neurogenesis. Neuroimmunomodulation 17:200–201.  https://doi.org/10.1159/000258723 CrossRefPubMedGoogle Scholar
  43. Mazzucco CA, Lieblich SE, Bingham BI, Williamson MA, Viau V, Galea LA (2006) Both estrogen receptor alpha and estrogen receptor beta agonists enhance cell proliferation in the dentate gyrus of adult female rats. Neuroscience 141:1793–1800CrossRefGoogle Scholar
  44. McEwen BS, Akama KT, Spencer-Segal JL, Milner TA, Waters EM (2012) Estrogen effects on the brain: actions beyond the hypothalamus via novel mechanisms. Behav Neurosci 126:4–16CrossRefGoogle Scholar
  45. Mendes-Oliveira J, Lopes Campos F, Videira RA, Baltazar G (2017) GPER activation is effective in protecting against inflammation-induced nigral dopaminergic loss and motor function impairment. Brain Behav Immun 64:296–307.  https://doi.org/10.1016/j.bbi.2017.04.016 CrossRefPubMedGoogle Scholar
  46. Meneses A, Castillo C, Ibarra M, Hong E (1996) Effects of aging and hypertension on learning, memory, and activity in rats. Physiol Behav 60:341–345CrossRefGoogle Scholar
  47. Meyer MR, Prossnitz ER, Barton M (2011) GPER/GPR30 and regulation of vascular tone and blood pressure. Immunol Endocr Metab Agents Med Chem 11:255–261.  https://doi.org/10.2174/1871522211108040255 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702.  https://doi.org/10.1016/j.neuron.2011.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nilsson S, Gustafsson JA (2011) Estrogen receptors: therapies targeted to receptor subtypes. Clin Pharmacol Ther 89:44–55CrossRefGoogle Scholar
  50. Ownby RL (2010) Neuroinflammation and cognitive aging. Curr Psychiatry Rep 12:39–45.  https://doi.org/10.1007/s11920-009-0082-1 CrossRefPubMedGoogle Scholar
  51. Paglieri C, Bisbocci D, Caserta M, Rabbia F, Bertello C, Canade A, Veglio F (2008) Hypertension and cognitive function. Clin Exp Hypertens 30:701–710CrossRefGoogle Scholar
  52. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd edn. Academic Press, San DiegoGoogle Scholar
  53. Pepermans RA, Prossnitz ER (2019) ERalpha-targeted endocrine therapy, resistance and the role of GPER. Steroids 152:108493.  https://doi.org/10.1016/j.steroids.2019.108493 CrossRefPubMedGoogle Scholar
  54. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45CrossRefGoogle Scholar
  55. Pietranera L, Saravia F, Gonzalez Deniselle MC, Roig P, Lima A, De Nicola AF (2006) Abnormalities of the hippocampus are similar in deoxycorticosterone acetate-salt hypertensive rats and spontaneously hypertensive rats. J Neuroendocrinol 18:466–474CrossRefGoogle Scholar
  56. Pietranera L, Saravia FE, Roig P, Lima A, De Nicola AF (2008) Protective effects of estradiol in the brain of rats with genetic or mineralocorticoid-induced hypertension. Psychoneuroendocrinology 33:270–281CrossRefGoogle Scholar
  57. Pietranera L, Lima A, Roig P, De Nicola AF (2010) Involvement of brain-derived neurotrophic factor and neurogenesis in oestradiol neuroprotection of the hippocampus of hypertensive rats. J Neuroendocrinol 22:1082–1092CrossRefGoogle Scholar
  58. Pietranera L, Brocca ME, Roig P, Lima A, Garcia-Segura LM, De Nicola AF (2014) 17alpha-Oestradiol-induced neuroprotection in the brain of spontaneously hypertensive rats. J Neuroendocrinol 26:310–320CrossRefGoogle Scholar
  59. Pietranera L, Brocca ME, Roig P, Lima A, Garcia-Segura LM, De Nicola AF (2015) Estrogens are neuroprotective factors for hypertensive encephalopathy. J Steroid Biochem Mol Biol 146:15–25CrossRefGoogle Scholar
  60. Pietranera L et al (2016) Selective oestrogen receptor agonists rescued hippocampus parameters in male spontaneously hypertensive rats. J Neuroendocrinol.  https://doi.org/10.1111/jne.12415 CrossRefPubMedGoogle Scholar
  61. Prossnitz ER (2018) GPER modulators: opportunity Nox on the heels of a class Akt. J Steroid Biochem Mol Biol 176:73–81.  https://doi.org/10.1016/j.jsbmb.2017.03.005 CrossRefPubMedGoogle Scholar
  62. Prossnitz ER, Oprea TI, Sklar LA, Arterburn JB (2008) The ins and outs of GPR30: a transmembrane estrogen receptor. J Steroid Biochem Mol Biol 109:350–353.  https://doi.org/10.1016/j.jsbmb.2008.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Reckelhoff JF (2018) Sex differences in regulation of blood pressure. Adv Exp Med Biol 1065:139–151.  https://doi.org/10.1007/978-3-319-77932-4_9 CrossRefPubMedGoogle Scholar
  64. Reckelhoff JF, Zhang H, Srivastava K, Granger JP (1999) Gender differences in hypertension in spontaneously hypertensive rats: role of androgens and androgen receptor. Hypertension 34:920–923CrossRefGoogle Scholar
  65. Ritter S, Dinh TT, Stone S, Ross N (1988) Cerebroventricular dilation in spontaneously hypertensive rats (SHRs) is not attenuated by reduction of blood pressure. Brain Res 450:354–359CrossRefGoogle Scholar
  66. Ruiz-Palmero I, Hernando M, Garcia-Segura LM, Arevalo MA (2013) G protein-coupled estrogen receptor is required for the neuritogenic mechanism of 17beta-estradiol in developing hippocampal neurons. Mol Cell Endocrinol 372:105–115.  https://doi.org/10.1016/j.mce.2013.03.018 CrossRefPubMedGoogle Scholar
  67. Sabbatini M, Baldoni E, Cadoni A, Vitaioli L, Zicca A, Amenta F (1999) Forebrain white matter in spontaneously hypertensive rats: a quantitative image analysis study. Neurosci Lett 265:5–8CrossRefGoogle Scholar
  68. Sabbatini M, Strocchi P, Vitaioli L, Amenta P (2000) The hippocampus in spontaneously hypertensive rats: a quantitative microanatomical study. Neuroscience 100:251–258CrossRefGoogle Scholar
  69. Sarvari M et al (2011) Estrogens regulate neuroinflammatory genes via estrogen receptors alpha and beta in the frontal cortex of middle-aged female rats. J Neuroinflammation 8:82CrossRefGoogle Scholar
  70. Schmitz C, Hof PR (2005) Design-based stereology in neuroscience. Neuroscience 130:813–831CrossRefGoogle Scholar
  71. Sierra A et al (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495.  https://doi.org/10.1016/j.stem.2010.08.014 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sierra A, Beccari S, Diaz-Aparicio I, Encinas JM, Comeau S, Tremblay ME (2014) Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis. Neural Plast 2014:610343CrossRefGoogle Scholar
  73. Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44.  https://doi.org/10.1038/417039a CrossRefPubMedGoogle Scholar
  74. Tanapat P, Hastings NB, Gould E (2005) Ovarian steroids influence cell proliferation in the dentate gyrus of the adult female rat in a dose- and time-dependent manner. J Comp Neurol 481:252–265CrossRefGoogle Scholar
  75. Tang H et al (2014) GPR30 mediates estrogen rapid signaling and neuroprotection. Mol Cell Endocrinol 387:52–58CrossRefGoogle Scholar
  76. Tayebati SK, Tomassoni D, Amenta F (2012) Spontaneously hypertensive rat as a model of vascular brain disorder: microanatomy, neurochemistry and behavior. J Neurol Sci 322:241–249CrossRefGoogle Scholar
  77. Tayebati SK, Tomassoni D, Amenta F (2016) Neuroinflammatory markers in spontaneously hypertensive rat brain: an immunohistochemical study. CNS Neurol Disord Drug Targets 15:995–1000CrossRefGoogle Scholar
  78. Tomassoni D, Avola R, Di Tullio MA, Sabbatini M, Vitaioli L, Amenta F (2004) Increased expression of glial fibrillary acidic protein in the brain of spontaneously hypertensive rats. Clin Exp Hypertens 26(4):335-350CrossRefGoogle Scholar
  79. Torres-Platas SG et al (2014) Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation 11:12.  https://doi.org/10.1186/1742-2094-11-12 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069.  https://doi.org/10.1523/JNEUROSCI.4158-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Vallieres L, Campbell IL, Gage FH, Sawchenko PE (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 22:486–492CrossRefGoogle Scholar
  82. Yates MA, Li Y, Chlebeck PJ, Offner H (2010) GPR30, but not estrogen receptor-alpha, is crucial in the treatment of experimental autoimmune encephalomyelitis by oral ethinyl estradiol. BMC Immunol 11:20.  https://doi.org/10.1186/1471-2172-11-20 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhang B et al (2010) Estradiol and G1 reduce infarct size and improve immunosuppression after experimental stroke. J Immunol 184:4087–4094.  https://doi.org/10.4049/jimmunol.0902339 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zhang QG et al (2014) Brain-derived estrogen exerts anti-inflammatory and neuroprotective actions in the rat hippocampus. Mol Cell Endocrinol 389:84–91CrossRefGoogle Scholar
  85. Zhao TZ, Ding Q, Hu J, He SM, Shi F, Ma LT (2016) GPER expressed on microglia mediates the anti-inflammatory effect of estradiol in ischemic stroke. Brain Behav 6:e00449.  https://doi.org/10.1002/brb3.449 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Neuroendocrine BiochemistryInstituto de Biología y Medicina ExperimentalBuenos AiresArgentina
  2. 2.Department of Human Biochemistry, Faculty of MedicineUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations