Advertisement

To be Wild or Mutant: Role of Isocitrate Dehydrogenase 1 (IDH1) and 2-Hydroxy Glutarate (2-HG) in Gliomagenesis and Treatment Outcome in Glioma

  • Bharathan Bhavya
  • C. R. Anand
  • U. K. Madhusoodanan
  • P. Rajalakshmi
  • K. Krishnakumar
  • H. V. Easwer
  • A. N. Deepti
  • Srinivas GopalaEmail author
Review Paper
  • 225 Downloads

Abstract

Molecular and clinical research based on isocitrate dehydrogenase (IDH) mutations is much sought after in glioma research since a decade of its discovery in 2008. IDH enzyme normally catalyzes isocitrate to α-keto-glutarate (α-KG), but once the gene is mutated it produces an ‘oncometabolite’, 2-hydroxyglutarate (2-HG). 2-HG is proposed to inhibit α-KG-dependent dioxygenases and also blocks cellular differentiation. Here, we discuss the role of the IDH1 mutation in gliomagenesis. The review also focuses on the effect of 2-HG on glioma epigenetics, the cellular signaling involved in IDH1 mutant glioma cells and the therapeutic response seen in mutant IDH1(mIDH1) harboring glioma patients in comparison to the patients with wild-type IDH1. The review encompasses the debatable impacts of the mutation on immune microenvironment a propos of various mIDH1 inhibitors in practice or in trials. Recent studies revealing the relation of IDH mutation with the immune microenvironment and inflammatory status in untreated versus treated glioblastoma patients are highlighted with respect to prospective therapeutic targets. Also at the molecular level, the association of mIDH1/2-HG with the intracellular components such as mitochondria and other neighboring cells is discussed.

Keywords

Mutant IDH1 Glioma 2-HG Tumorigenesis 

Notes

Acknowledgements

The authors would like to acknowledge Dr. Cibin TR for his valuable inputs and suggestions towards the final drafting of the manuscript. BB would like to thank Department of Science and Technology, India for providing the Inspire Fellowship (IF150784). ACR acknowledges Council of Scientific and Industrial Research (09/523(0082)/2014-EMR-1) Government of India for Research Fellowship.

Author Contributions

BB and ACR were the major contributors (designing, searching and writing of the manuscript). MUK, DAN, RP and SG discussed ideas, helped in the outline of the review, and corrected the text. HVE, KK and SG made critical revision for important intellectual content and final approval of the review. The conception of the review was done by SG.

Funding

No funding was used for the manuscript completion.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Human and Animal Rights

This is a review and does not involve human participants and/or animals.

Informed Consent

No informed consent is needed.

References

  1. Amelot A, Cremoux PD, Quillien V et al (2015) IDH-mutation is a weak predictor of long-term survival in glioblastoma patients. PLoS ONE 10:e0130596.  https://doi.org/10.1371/journal.pone.0130596 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Annovazzi L, Mellai M, Bovio E et al (2018) Microglia immunophenotyping in gliomas. Oncol Lett 15:998–1006.  https://doi.org/10.3892/ol.2017.7386 CrossRefPubMedGoogle Scholar
  3. Berghoff AS, Kiesel B, Widhalm G et al (2017) Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro-oncology 19:1460–1468.  https://doi.org/10.1093/neuonc/nox054 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bralten LBC, French PJ (2011) Genetic Alterations in Glioma. Cancers (Basel) 3:1129–1140.  https://doi.org/10.3390/cancers3011129 CrossRefGoogle Scholar
  5. Bunse L, Pusch S, Bunse T et al (2018) Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med 24:1192.  https://doi.org/10.1038/s41591-018-0095-6 CrossRefPubMedGoogle Scholar
  6. Chen X, Zhang M, Gan H et al (2018) A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat Commun 9:2949.  https://doi.org/10.1038/s41467-018-05373-4 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Choi BD, Curry WT (2017) IDH mutational status and the immune system in gliomas: A tale of two tumors? Transl Cancer Res 6:S1253-S1256–S1256.  https://doi.org/10.21037/16582 CrossRefGoogle Scholar
  8. Circu ML, Aw TY (2012) Glutathione and modulation of cell apoptosis. Biochem Biophys Acta 1823:1767.  https://doi.org/10.1016/j.bbamcr.2012.06.019 CrossRefPubMedGoogle Scholar
  9. Cohen A, Holmen S, Colman H (2013) IDH1 and IDH2 Mutations in Gliomas. Curr Neurol Neurosci Rep 13:345.  https://doi.org/10.1007/s11910-013-0345-4 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Combs SE, Rieken S, Wick W et al (2011) Prognostic significance of IDH-1 and MGMT in patients with glioblastoma: One step forward, and one step back? Radiat Oncol 6:115.  https://doi.org/10.1186/1748-717X-6-115 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Costantini B, Kordasti SY, Kulasekararaj AG et al (2013) The effects of 5-azacytidine on the function and number of regulatory T cells and T-effectors in myelodysplastic syndrome. Haematologica 98:1196–1205.  https://doi.org/10.3324/haematol.2012.074823 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Crespo I, Vital AL, Gonzalez-Tablas M et al (2015) Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol 185:1820–1833.  https://doi.org/10.1016/j.ajpath.2015.02.023 CrossRefPubMedGoogle Scholar
  13. Cui D, Ren J, Shi J et al (2016) R132H mutation in IDH1 gene reduces proliferation, cell survival and invasion of human glioma by downregulating Wnt/β-catenin signaling. Int J Biochem Cell Biol 73:72–81.  https://doi.org/10.1016/j.biocel.2016.02.007 CrossRefPubMedGoogle Scholar
  14. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739.  https://doi.org/10.1038/nature08617 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dang L, Yen K, Attar EC (2016) IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol 27:599–608.  https://doi.org/10.1093/annonc/mdw013 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gagné LM, Boulay K, Topisirovic I et al (2017) Oncogenic activities of IDH1/2 mutations: from epigenetics to cellular signaling. Trends Cell Biol 27:738–752.  https://doi.org/10.1016/j.tcb.2017.06.002 CrossRefGoogle Scholar
  17. Gao L, Chen B, Li J et al (2017) Wnt/β-catenin signaling pathway inhibits the proliferation and apoptosis of U87 glioma cells via different mechanisms. PLoS ONE.  https://doi.org/10.1371/journal.pone.0181346 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Garrett M, Sperry J, Braas D et al (2018) Metabolic characterization of isocitrate dehydrogenase (IDH) mutant and IDH wildtype gliomaspheres uncovers cell type-specific vulnerabilities. Cancer Metab.  https://doi.org/10.1186/s40170-018-0177-4 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Golub D, Iyengar N, Dogra S et al (2019) Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics. Front Oncol.  https://doi.org/10.3389/fonc.2019.00417 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Grassian AR, Parker SJ, Davidson SM et al (2014) IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res 74:3317–3331.  https://doi.org/10.1158/0008-5472.CAN-14-0772-T CrossRefPubMedPubMedCentralGoogle Scholar
  21. Han CH, Batchelor TT (2017) Isocitrate dehydrogenase mutation as a therapeutic target in gliomas. Chin Clin Oncol 6:33.  https://doi.org/10.21037/cco.2017.06.11 CrossRefPubMedGoogle Scholar
  22. Hartmann C, Hentschel B, Tatagiba M et al (2011) Molecular markers in low-grade gliomas: Predictive or prognostic? Clin Cancer Res 17:4588–4599.  https://doi.org/10.1158/1078-0432.CCR-10-3194 CrossRefPubMedGoogle Scholar
  23. Houillier C, Wang X, Kaloshi G et al (2010) IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 75:1560–1566.  https://doi.org/10.1212/WNL.0b013e3181f96282 CrossRefPubMedGoogle Scholar
  24. Jiang B, Zhao W, Shi M et al (2018) IDH1 Arg-132 mutant promotes tumor formation through down-regulating p53. J Biol Chem 293:9747–9758.  https://doi.org/10.1074/jbc.RA117.001385 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kaur B, Khwaja FW, Severson EA et al (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-oncol 7:134–153.  https://doi.org/10.1215/S1152851704001115 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kessler J, Güttler A, Wichmann H et al (2015) IDH1R132H mutation causes a less aggressive phenotype and radiosensitizes human malignant glioma cells independent of the oxygenation status. Radiother Oncol 116:381–387.  https://doi.org/10.1016/j.radonc.2015.08.007 CrossRefPubMedGoogle Scholar
  27. Kickingereder P, Sahm F, Radbruch A et al (2015) IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep.  https://doi.org/10.1038/srep16238 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Koivunen P, Lee S, Duncan CG et al (2012) Transformation by the R enantiomer of 2-hydroxyglutarate Linked to EglN activation. Nature 483:484–488.  https://doi.org/10.1038/nature10898 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kranendijk M, Struys EA, Salomons GS et al (2012) Progress in understanding 2-hydroxyglutaric acidurias. J Inherit Metab Dis 35:571.  https://doi.org/10.1007/s10545-012-9462-5 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Krell D, Assoku M, Galloway M et al (2011) Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PLoS ONE.  https://doi.org/10.1371/journal.pone.0019868 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li F, He X, Ye D et al (2015) NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol Cell 60:661–675.  https://doi.org/10.1016/j.molcel.2015.10.017 CrossRefPubMedGoogle Scholar
  32. Li S, Sun C, Gu Y et al (2019) Mutation of IDH1 aggravates the fatty acid-induced oxidative stress in HCT116 cells by affecting the mitochondrial respiratory chain. Mol Med Rep 19:2509–2518.  https://doi.org/10.3892/mmr.2019.9903 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu A, Hou C, Chen H et al (2016) Genetics and epigenetics of glioblastoma: applications and overall incidence of IDH1 mutation. Front Oncol.  https://doi.org/10.3389/fonc.2016.00016 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Liu P-S, Wang H, Li X et al (2017) α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 18:985–994.  https://doi.org/10.1038/ni.3796 CrossRefPubMedGoogle Scholar
  35. Losman J-A, Kaelin WG (2013) What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 27:836–852.  https://doi.org/10.1101/gad.217406.113 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820.  https://doi.org/10.1007/s00401-016-1545-1 CrossRefGoogle Scholar
  37. Madala HR, Punganuru SR, Arutla V et al (2018) Beyond brooding on oncometabolic havoc in IDH-mutant gliomas and AML: current and future therapeutic strategies. Cancers (Basel).  https://doi.org/10.3390/cancers10020049 CrossRefGoogle Scholar
  38. Mellai M, Caldera V, Annovazzi L, Schiffer D (2013) The distribution and significance of IDH mutations in gliomas. Evolut Mol Biol Brain Tumors Ther Implic.  https://doi.org/10.5772/52357 CrossRefGoogle Scholar
  39. Molenaar RJ, Verbaan D, Lamba S et al (2014) The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro Oncol 16:1263–1273.  https://doi.org/10.1093/neuonc/nou005 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Molenaar RJ, Maciejewski JP, Wilmink JW, Noorden CJF (2018) Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene 37:1949–1960.  https://doi.org/10.1038/s41388-017-0077-z CrossRefPubMedPubMedCentralGoogle Scholar
  41. Muller PAJ, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15:2–8.  https://doi.org/10.1038/ncb2641 CrossRefPubMedGoogle Scholar
  42. Myung JK, Cho HJ, Kim H et al (2014) Prognosis of glioblastoma with oligodendroglioma component is associated with the IDH1 mutation and MGMT methylation status. Transl Oncol 7:712–719.  https://doi.org/10.1016/j.tranon.2014.10.002 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nagpal J, Jamoona A, Gulati ND et al (2006) Revisiting the role of p53 in primary and secondary glioblastomas. Anticancer Res 26:4633–4639PubMedGoogle Scholar
  44. Nasser MM, Mehdipour P (2018) Exploration of involved key genes and signaling diversity in brain tumors. Cell Mol Neurobiol 38:393–419.  https://doi.org/10.1007/s10571-017-0498-9 CrossRefPubMedGoogle Scholar
  45. Navis AC, Niclou SP, Fack F et al (2013) Increased mitochondrial activity in a novel IDH1-R132H mutant human oligodendroglioma xenograft model: in situ detection of 2-HG and α-KG. Acta Neuropathol Commun 1:18.  https://doi.org/10.1186/2051-5960-1-18 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nobusawa S, Watanabe T, Kleihues P, Ohgaki H (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15:6002–6007.  https://doi.org/10.1158/1078-0432.CCR-09-0715 CrossRefPubMedGoogle Scholar
  47. Núñez FJ, Mendez FM, Kadiyala P et al (2019) IDH1-R132H acts as a tumor suppressor in glioma via epigenetic up-regulation of the DNA damage response. Sci Transl Med 11:eaaq1427.  https://doi.org/10.1126/scitranslmed.aaq1427 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ohba S, Hirose Y (2016) Biological significance of mutant isocitrate dehydrogenase 1 and 2 in gliomagenesis. Neurol Med Chir (Tokyo) 56:170–179.  https://doi.org/10.2176/nmc.ra.2015-0322 CrossRefGoogle Scholar
  49. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19:764–772.  https://doi.org/10.1158/1078-0432.CCR-12-3002 CrossRefPubMedGoogle Scholar
  50. Osuka S, Van Meir EG (2017) Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest 127:415–426.  https://doi.org/10.1172/JCI89587 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Oyan B, Ozturk MA, Ozkan F et al (2015) The change in the status of MGMT methylation and IDH mutation in initial and recurrent glial tumors and its relation with prognosis. JCO 33:e13058–e13058.  https://doi.org/10.1200/jco.2015.33.15_suppl.e13058 CrossRefGoogle Scholar
  52. Park JK, Hodges T, Arko L et al (2010) Scale to predict survival after surgery for recurrent glioblastoma multiforme. J Clin Oncol 28:3838–3843.  https://doi.org/10.1200/JCO.2010.30.0582 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812.  https://doi.org/10.1126/science.1164382 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pellegatta S, Valletta L, Corbetta C et al (2015) Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol Commun 3:4.  https://doi.org/10.1186/s40478-014-0180-0 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Philip B, Yu DX, Silvis MR et al (2018) Mutant IDH1 promotes glioma formation in vivo. Cell Rep 23:1553–1564.  https://doi.org/10.1016/j.celrep.2018.03.133 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Polívka J, Pešta M, Pitule P et al (2018) IDH1 mutation is associated with lower expression of VEGF but not microvessel formation in glioblastoma multiforme. Oncotarget 9:16462–16476.  https://doi.org/10.18632/oncotarget.24536 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Poon CC, Gordon PMK, Liu K et al (2019) Differential microglia and macrophage profiles in human IDH-mutant and -wild type glioblastoma. Oncotarget 10:3129–3143.  https://doi.org/10.18632/oncotarget.26863 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rasmussen KD, Helin K (2016) Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 30:733–750.  https://doi.org/10.1101/gad.276568.115 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Richardson LG, Choi BD, Curry WT (2019) (R)-2-hydroxyglutarate drives immune quiescence in the tumor microenvironment of IDH-mutant gliomas. Transl Cancer Res 8:S167–S170.  https://doi.org/10.21037/tcr.2019.01.08 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Richterová R, Kolarovszki B (2016) Genetic alterations of glioblastoma. Neurooncol Newer Dev.  https://doi.org/10.5772/63127 CrossRefGoogle Scholar
  61. Rohle D, Popovici-Muller J, Palaskas N et al (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340:626–630.  https://doi.org/10.1126/science.1236062 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rosiak K, Smolarz M, Stec WJ et al (2016) IDH1R132H in neural stem cells: differentiation impaired by increased apoptosis. PLoS ONE.  https://doi.org/10.1371/journal.pone.0154726 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schiffer D, Annovazzi L, Casalone C et al (2018) Glioblastoma: microenvironment and niche concept. Cancers (Basel).  https://doi.org/10.3390/cancers11010005 CrossRefGoogle Scholar
  64. Semukunzi H, Roy D, Li H et al (2017) IDH mutations associated impact on related cancer epidemiology and subsequent effect toward HIF-1α. Biomed Pharmacother 89:805–811.  https://doi.org/10.1016/j.biopha.2017.02.083 CrossRefPubMedGoogle Scholar
  65. Shi J, Sun B, Shi W et al (2014a) Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumor Biol 36:655–662.  https://doi.org/10.1007/s13277-014-2644-z CrossRefGoogle Scholar
  66. Shi J, Zuo H, Ni L et al (2014b) An IDH1 mutation inhibits growth of glioma cells via GSH depletion and ROS generation. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 35:839–845.  https://doi.org/10.1007/s10072-013-1607-2 CrossRefGoogle Scholar
  67. Shim E-H, Livi CB, Rakheja D et al (2014) l-2-hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov 4:1290–1298.  https://doi.org/10.1158/2159-8290.CD-13-0696 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Singh A, Gurav M, Dhanavade S et al (2017) Diffuse glioma—Rare homozygous IDH point mutation, is it an oncogenetic mechanism? Neuropathology 37:582–585.  https://doi.org/10.1111/neup.12401 CrossRefPubMedGoogle Scholar
  69. Smolková K, Ježek P (2012) The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. Int J Cell Biol. https://www.hindawi.com/journals/ijcb/2012/273947/. Accessed 4 Mar 2019
  70. SongTao Q, Lei Y, Si G et al (2012) IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci 103:269–273.  https://doi.org/10.1111/j.1349-7006.2011.02134.x CrossRefPubMedGoogle Scholar
  71. Struys EA (2006) D-2-Hydroxyglutaric aciduria: unravelling the biochemical pathway and the genetic defect. J Inherit Metab Dis 29:21–29.  https://doi.org/10.1007/s10545-006-0317-9 CrossRefPubMedGoogle Scholar
  72. Stuani L, Recher C, Portais J-C, Sarry J-E (2017) Utilization of a-Ketoglutarate for Synthesis of 2-Hydroxyglutarate Oncometabolite Promotes Catabolic Flexibility, Redox Perturbation and Mitochondrial Activity That Supports Chemoresistance in IDH1 Mutant Acute Myeloid Leukemia. Blood 130:5080–5080Google Scholar
  73. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466.  https://doi.org/10.1016/S1470-2045(09)70025-7 CrossRefPubMedGoogle Scholar
  74. Szulzewsky F, Pelz A, Feng X et al (2015) Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS ONE 10:e0116644.  https://doi.org/10.1371/journal.pone.0116644 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tateishi K, Yamamoto T (2019) IDH-Mutant Gliomas. Brain and spinal tumors—primary and secondary.  https://doi.org/10.5772/intechopen.84543
  76. Urban DJ, Martinez NJ, Davis MI et al (2017) Assessing inhibitors of mutant isocitrate dehydrogenase using a suite of pre-clinical discovery assays. Sci Rep 7:12758.  https://doi.org/10.1038/s41598-017-12630-x CrossRefPubMedPubMedCentralGoogle Scholar
  77. Waitkus MS, Diplas BH, Yan H (2016) Isocitrate dehydrogenase mutations in gliomas. Neuro Oncol 18:16–26.  https://doi.org/10.1093/neuonc/nov136 CrossRefPubMedGoogle Scholar
  78. Wang G, Sai K, Gong F et al (2014) Mutation of isocitrate dehydrogenase 1 induces glioma cell proliferation via nuclear factor-κB activation in a hypoxia-inducible factor 1-α dependent manner. Mol Med Rep 9:1799–1805.  https://doi.org/10.3892/mmr.2014.2052 CrossRefPubMedGoogle Scholar
  79. Wang L, Zhang C, Zhang Z et al (2018) Specific clinical and immune features of CD68 in glioma via 1,024 samples. Cancer Manag Res 10:6409–6419.  https://doi.org/10.2147/CMAR.S183293 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153.  https://doi.org/10.2353/ajpath.2009.080958 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Williams SC, Karajannis MA, Chiriboga L et al (2011) R132H-mutation of isocitrate dehydrogenase-1 is not sufficient for HIF-1α upregulation in adult glioma. Acta Neuropathol 121:279–281.  https://doi.org/10.1007/s00401-010-0790-y CrossRefPubMedGoogle Scholar
  82. Wong CC, Qian Y, Yu J (2017) Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 36:3359–3374.  https://doi.org/10.1038/onc.2016.485 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Xu X, Zhao J, Xu Z et al (2004) Structures of human cytosolic NADP-dependent Isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem 279:33946–33957.  https://doi.org/10.1074/jbc.M404298200 CrossRefPubMedGoogle Scholar
  84. Yalaza C, Ak H, Cagli MS et al (2017) R132H mutation in IDH1 gene is associated with increased tumor HIF1-alpha and serum VEGF levels in primary glioblastoma multiforme. Ann Clin Lab Sci 47:362–364PubMedGoogle Scholar
  85. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 Mutations in Gliomas. N Engl J Med 360:765–773.  https://doi.org/10.1056/NEJMoa0808710 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yang H, Ye D, Guan K-L, Xiong Y (2012) IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 18:5562–5571.  https://doi.org/10.1158/1078-0432.CCR-12-1773 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Yao Q, Yao Q, Cai G et al (2018) IDH1 mutation diminishes aggressive phenotype in glioma stem cells. Int J Oncol 52:270–278.  https://doi.org/10.3892/ijo.2017.4186 CrossRefPubMedGoogle Scholar
  88. Zhang K, Wang X, Zhou B, Zhang L (2013) The prognostic value of MGMT promoter methylation in Glioblastoma multiforme: a meta-analysis. Fam Cancer 12:449–458.  https://doi.org/10.1007/s10689-013-9607-1 CrossRefPubMedGoogle Scholar
  89. Zhang X, Rao A, Sette P et al (2016) IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro-oncology 18:1402–1412.  https://doi.org/10.1093/neuonc/now061 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zhang L, Sorensen M, Kristensen BW et al (2018) The oncometabolite D-2-hydroxyglutarate is an intercellular mediator in IDH-mutant gliomas that inhibits both complement and T cells. Clin Cancer Res.  https://doi.org/10.1158/1078-0432.ccr-17-3855 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zhao S, Lin Y, Xu W et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324:261–265.  https://doi.org/10.1126/science.1170944 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiochemistrySree Chitra Tirunal Institute for Medical Sciences and TechnologyTrivandrumIndia
  2. 2.Department of PathologySree Chitra Tirunal Institute for Medical Sciences and TechnologyTrivandrumIndia
  3. 3.Department of NeurosurgerySree Chitra Tirunal Institute for Medical Sciences and TechnologyTrivandrumIndia

Personalised recommendations