Advertisement

Role of MSK1 in the Induction of NF-κB by the Chemokine CX3CL1 in Microglial Cells

  • Marcos Galán-Ganga
  • Ángel J. García-Yagüe
  • Isabel Lastres-BeckerEmail author
Brief Communication
  • 89 Downloads

Abstract

Microglial cells are essential mediators of neuroinflammatory processes involved in several pathologies. Moreover, the chemokine fractalkine (CX3CL1) is essential in the crosstalk between neurons and microglia. However, the exact roles of CX3CL1, CX3CL1 receptor (CX3CR1) and microglia signalling are not fully understood in neuroinflammation. In addition, the findings reported on this subject are controversial. In this work, we investigated whether CX3CL1 induced pro-inflammatory signalling activation through NF-κB pathway. We were able to show that CX3CL1 activates the pro-inflammatory pathway mediated by the transcription factor NF-κB as an early response in microglial cells. On the other side, CX3CR1-deficient microglia showed impaired NF-κB axis. Phospho-kinase assay proteome profiles indicated that CX3CL1 induced several kinases such as MAPK’s (ERK and JNK), SRC-family tyrosine kinases (YES, FGR, LCK and LYN) and most interesting and also related to NF-κB, the mitogen- and stress-activated kinase-1 (MSK1). Knockdown of MSK1 with short interfering RNAs decreased partially MSK1 protein levels (about 50%), enough to decrease the mRNA levels of Il-1β, Tnf-α and iNos triggered by stimulation with CX3CL1. These results indicate the relevance of CX3CL1 in the activation of the pro-inflammatory NF-κB signalling pathway through MSK1 in microglial cells.

Keywords

Neuroinflammation Microglia CX3CR1 P65 NF-kB Nrf2 

Notes

Author Contributions

ILB contributed to conception and design of the study. MGG, AJGY and ILB acquisition and analysis of data. ILB contributed to drafting the manuscript and figures.

Funding

This work was supported by a Spanish Ministry of Economy and Competitiveness (Grants refs. SAF2016-76520-R).

Compliance with Ethical Standards

Conflict of interest

None of the authors has a conflict of interest to declare. The authors alone are responsible for the content and writing of the paper.

Ethical Approval

All experiments were performed by certified researchers according to regional, national, and European regulations concerning animal welfare and animal experimentation, and were authorized by the Ethics Committee for Research of the Universidad Autónoma de Madrid and the Comunidad Autónoma de Madrid, Spain, with Ref PROEX 279/14, following institutional, Spanish and European guidelines (Boletín Oficial del Estado (BOE) of 18 March 1988 and 86/609/EEC, 2003/65/EC European Council Directives).

Supplementary material

10571_2019_664_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 30 KB)
10571_2019_664_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 16 KB)

References

  1. Bisht K, Sharma KP, Lecours C, Sanchez MG, El Hajj H, Milior G, Olmos-Alonso A, Gomez-Nicola D, Luheshi G, Vallieres L, Branchi I, Maggi L, Limatola C, Butovsky O, Tremblay ME (2016) Dark microglia: a new phenotype predominantly associated with pathological states. Glia 64(5):826–839.  https://doi.org/10.1002/glia.22966 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Castro-Sanchez S, Garcia-Yague AJ, Lopez-Royo T, Casarejos M, Lanciego JL, Lastres-Becker I (2018) Cx3cr1-deficiency exacerbates alpha-synuclein-A53T induced neuroinflammation and neurodegeneration in a mouse model of Parkinson’s disease. Glia.  https://doi.org/10.1002/glia.23338 PubMedGoogle Scholar
  3. Chandrasekar B, Mummidi S, Perla RP, Bysani S, Dulin NO, Liu F, Melby PC (2003) Fractalkine (CX3CL1) stimulated by nuclear factor kappaB (NF-kappaB)-dependent inflammatory signals induces aortic smooth muscle cell proliferation through an autocrine pathway. Biochem J 373(Pt 2):547–558.  https://doi.org/10.1042/bj20030207 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen W-W, Zhang X, Huang W-J (2016) Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 13(4):3391–3396.  https://doi.org/10.3892/mmr.2016.4948 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflam 11:98–98.  https://doi.org/10.1186/1742-2094-11-98 CrossRefGoogle Scholar
  6. Corps KN, Roth TL, McGavern DB (2015) Inflammation and neuroprotection in traumatic brain injurytraumatic brain injurytraumatic brain injury. JAMA Neurol 72(3):355–362.  https://doi.org/10.1001/jamaneurol.2014.3558 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cuadrado A, Martin-Moldes Z, Ye J, Lastres-Becker I (2014) Transcription factors NRF2 and NF-kappaB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem 289(22):15244–15258.  https://doi.org/10.1074/jbc.M113.540633 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cuadrado A, Kugler S, Lastres-Becker I (2018) Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy. Redox Biol 14:522–534.  https://doi.org/10.1016/j.redox.2017.10.010 CrossRefPubMedGoogle Scholar
  9. Desforges NM, Hebron ML, Algarzae NK, Lonskaya I, Moussa CE (2012) Fractalkine mediates communication between pathogenic proteins and microglia: implications of anti-inflammatory treatments in different stages of neurodegenerative diseases. Int J Alzheimer’s Dis 2012:345472.  https://doi.org/10.1155/2012/345472 Google Scholar
  10. Donat CK, Scott G, Gentleman SM, Sastre M (2017) Microglial activation in traumatic brain injury. Front Aging Neurosci 9:208–208.  https://doi.org/10.3389/fnagi.2017.00208 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gyoneva S, Ransohoff RM (2015) Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. Trends Pharmacol Sci 36(7):471–480.  https://doi.org/10.1016/j.tips.2015.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hanzel CE, Pichet-Binette A, Pimentel LS, Iulita MF, Allard S, Ducatenzeiler A, Do Carmo S, Cuello AC (2014) Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging 35(10):2249–2262.  https://doi.org/10.1016/j.neurobiolaging.2014.03.026 CrossRefPubMedGoogle Scholar
  13. Huo LW, Ye YL, Wang GW, Ye YG (2015) Fractalkine (CX3CL1): a biomarker reflecting symptomatic severity in patients with knee osteoarthritis. J Investig Med 63(4):626–631.  https://doi.org/10.1097/jim.0000000000000158 CrossRefPubMedGoogle Scholar
  14. Jones BA, Beamer M, Ahmed S (2010) Fractalkine/CX3CL1: a potential new target for inflammatory diseases. Mol Interv 10(5):263–270.  https://doi.org/10.1124/mi.10.5.3 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kaminska B, Gozdz A, Zawadzka M, Ellert-Miklaszewska A, Lipko M (2009) MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Record 292(12):1902–1913.  https://doi.org/10.1002/ar.21047 CrossRefGoogle Scholar
  16. Kefaloyianni E, Gaitanaki C, Beis I (2006) ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal 18(12):2238–2251.  https://doi.org/10.1016/j.cellsig.2006.05.004 CrossRefPubMedGoogle Scholar
  17. Kim SH, Smith CJ, Van Eldik LJ (2004) Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging 25(4):431–439.  https://doi.org/10.1016/s0197-4580(03)00126-x CrossRefPubMedGoogle Scholar
  18. Lastres-Becker I (2017) Role of the transcription factor Nrf2 in Parkinson’s disease: new insights. J Alzheimers Dis Parkinsonism 7(4):9.  https://doi.org/10.4172/2161-0460.1000340 Google Scholar
  19. Lastres-Becker I, Ulusoy A, Innamorato NG, Sahin G, Rabano A, Kirik D, Cuadrado A (2012) alpha-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson’s disease. Hum Mol Genet 21(14):3173–3192.  https://doi.org/10.1093/hmg/dds143 CrossRefPubMedGoogle Scholar
  20. Lastres-Becker I, Innamorato NG, Jaworski T, Rabano A, Kugler S, Van Leuven F, Cuadrado A (2014) Fractalkine activates NRF2/NFE2L2 and heme oxygenase 1 to restrain tauopathy-induced microgliosis. Brain 137(Pt 1):78–91.  https://doi.org/10.1093/brain/awt323 CrossRefPubMedGoogle Scholar
  21. Lastres-Becker I, Garcia-Yague AJ, Scannevin RH, Casarejos MJ, Kugler S, Rabano A, Cuadrado A (2016) Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxid Redox Signal 25(2):61–77.  https://doi.org/10.1089/ars.2015.6549 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lauro C, Catalano M, Trettel F, Limatola C (2015) Fractalkine in the nervous system: neuroprotective or neurotoxic molecule? Ann N Y Acad Sci 1351:141–148.  https://doi.org/10.1111/nyas.12805 CrossRefPubMedGoogle Scholar
  23. Liu YZ, Wang C, Wang Q, Lin YZ, Ge YS, Li DM, Mao GS (2017) Role of fractalkine/CX3CR1 signaling pathway in the recovery of neurological function after early ischemic stroke in a rat model. Life Sci 184:87–94.  https://doi.org/10.1016/j.lfs.2017.06.012 CrossRefPubMedGoogle Scholar
  24. Lyons A, Lynch AM, Downer EJ, Hanley R, O’Sullivan JB, Smith A, Lynch MA (2009) Fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway attentuates microglial activation in vivo and in vitro. J Neurochem 110(5):1547–1556.  https://doi.org/10.1111/j.1471-4159.2009.06253.x CrossRefPubMedGoogle Scholar
  25. Mecca C, Giambanco I, Donato R, Arcuri C (2018) Microglia and aging: the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes. Int J Mol Sci.  https://doi.org/10.3390/ijms19010318 Google Scholar
  26. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016.  https://doi.org/10.1038/ncb2329 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Morganti JM, Nash KR, Grimmig BA, Ranjit S, Small B, Bickford PC, Gemma C (2012) The soluble isoform of CX3CL1 is necessary for neuroprotection in a mouse model of Parkinson’s disease. J Neurosci 32(42):14592–14601.  https://doi.org/10.1523/jneurosci.0539-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pabon MM, Bachstetter AD, Hudson CE, Gemma C, Bickford PC (2011) CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J Neuroinflammation 8:9.  https://doi.org/10.1186/1742-2094-8-9 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA, Vath J, Gosselin M, Ma J, Dussault B, Woolf E, Alperin G, Culpepper J, Gutierrez-Ramos JC, Gearing D (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387(6633):611–617.  https://doi.org/10.1038/42491 CrossRefPubMedGoogle Scholar
  30. Peng H, Guerau-de-Arellano M, Mehta VB, Yang Y, Huss DJ, Papenfuss TL, Lovett-Racke AE, Racke MK (2012) Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor kappaB (NF-kappaB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling. J Biol Chem 287(33):28017–28026.  https://doi.org/10.1074/jbc.M112.383380 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Poniatowski ŁA, Wojdasiewicz P, Krawczyk M, Szukiewicz D, Gasik R, Kubaszewski Ł, Kurkowska-Jastrzębska I (2017) Analysis of the role of CX3CL1 (fractalkine) and its receptor CX3CR1 in traumatic brain and spinal cord injury: insight into recent advances in actions of neurochemokine agents. Mol Neurobiol 54(3):2167–2188.  https://doi.org/10.1007/s12035-016-9787-4 CrossRefPubMedGoogle Scholar
  32. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783.  https://doi.org/10.1126/science.aag2590 CrossRefPubMedGoogle Scholar
  33. Raspe C, Hocherl K, Rath S, Sauvant C, Bucher M (2013) NF-kappaB-mediated inverse regulation of fractalkine and CX3CR1 during CLP-induced sepsis. Cytokine 61(1):97–103.  https://doi.org/10.1016/j.cyto.2012.08.034 CrossRefPubMedGoogle Scholar
  34. Regen F, Hellmann-Regen J, Costantini E, Reale M (2017) Neuroinflammation and Alzheimer’s disease: implications for microglial activation. Curr Alzheimer Res 14(11):1140–1148.  https://doi.org/10.2174/1567205014666170203141717 CrossRefPubMedGoogle Scholar
  35. Rojo AI, Salinas M, Martin D, Perona R, Cuadrado A (2004) Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and nuclear factor-kappaB. J Neurosci 24(33):7324–7334.  https://doi.org/10.1523/JNEUROSCI.2111-04.2004 CrossRefPubMedGoogle Scholar
  36. Rojo AI, Innamorato NG, Martin-Moreno AM, De Ceballos ML, Yamamoto M, Cuadrado A (2010) Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 58(5):588–598.  https://doi.org/10.1002/glia.20947 CrossRefPubMedGoogle Scholar
  37. Rojo AI, McBean G, Cindric M, Egea J, López MG, Rada P, Zarkovic N, Cuadrado A (2014) Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal 21(12):1766–1801.  https://doi.org/10.1089/ars.2013.5745 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM, MacEwan DJ (2012) The high Nrf2 expression in human acute myeloid leukemia is driven by NF-kappaB and underlies its chemo-resistance. Blood 120(26):5188–5198.  https://doi.org/10.1182/blood-2012-04-422121 CrossRefPubMedGoogle Scholar
  39. Sheridan GK, Murphy KJ (2013) Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol 3(12):130181.  https://doi.org/10.1098/rsob.130181 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Socodato R, Portugal CC, Domith I, Oliveira NA, Coreixas VS, Loiola EC, Martins T, Santiago AR, Paes-de-Carvalho R, Ambrosio AF, Relvas JB (2015) c-Src function is necessary and sufficient for triggering microglial cell activation. Glia 63(3):497–511.  https://doi.org/10.1002/glia.22767 CrossRefPubMedGoogle Scholar
  41. Streit WJ, Mrak RE, Griffin WST (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflam 1(1):14.  https://doi.org/10.1186/1742-2094-1-14 CrossRefGoogle Scholar
  42. Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W, Haegeman G (1998) p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem 273(6):3285–3290CrossRefPubMedGoogle Scholar
  43. Vermeulen L, De Wilde G, Van Damme P, Vanden Berghe W, Haegeman G (2003) Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J 22(6):1313–1324.  https://doi.org/10.1093/emboj/cdg139 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wang Y, Huang Y, Xu Y, Ruan W, Wang H, Zhang Y, Saavedra JM, Zhang L, Huang Z, Pang T (2018) A dual AMPK/Nrf2 activator reduces brain inflammation after stroke by enhancing microglia M2 polarization. Antioxid Redox Signal 28(2):141–163.  https://doi.org/10.1089/ars.2017.7003 CrossRefPubMedGoogle Scholar
  45. Wojdasiewicz P, Poniatowski LA, Kotela A, Deszczyński J, Kotela I, Szukiewicz D (2014) The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1: occurrence and potential role in osteoarthritis. Archivum Immunologiae et Therapiae Experimentalis 62(5):395–403.  https://doi.org/10.1007/s00005-014-0275-0 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zanier ER, Marchesi F, Ortolano F, Perego C, Arabian M, Zoerle T, Sammali E, Pischiutta F, De Simoni MG (2016) Fractalkine receptor deficiency is associated with early protection but late worsening of outcome following brain trauma in mice. J Neurotrauma 33(11):1060–1072.  https://doi.org/10.1089/neu.2015.4041 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSICMadridSpain
  2. 2.Department of Biochemistry, School of MedicineUniversidad Autónoma de MadridMadridSpain

Personalised recommendations