Advertisement

Cellular and Molecular Neurobiology

, Volume 39, Issue 2, pp 169–180 | Cite as

Brain Control of Sexually Dimorphic Liver Function and Disease: The Endocrine Connection

  • Belen Brie
  • Maria Cecilia Ramirez
  • Catalina De Winne
  • Felicitas Lopez Vicchi
  • Luis Villarruel
  • Eleonora Sorianello
  • Paolo Catalano
  • Ana María Ornstein
  • Damasia Becu-VillalobosEmail author
Review Paper
  • 53 Downloads

Abstract

A multistep signaling cascade originates in brain centers that regulate hypothalamic growth hormone-releasing hormone (Ghrh) and somatostatin expression levels and release to control the pattern of GH secretion. This process is sexually fine-tuned, and relays important information to the liver where GH receptors can be found. The temporal pattern of pituitary GH secretion, which is sex-specific in many species (episodic in males and more stable in females), represents a major component in establishing and maintaining the sexual dimorphism of hepatic gene transcription. The liver is sexually dimorphic exhibiting major differences in the profile of more than 1000 liver genes related to steroid, lipid, and foreign compound metabolism. Approximately, 90% of these sex-specific liver genes were shown to be primarily dependent on sexually dimorphic GH secretory patterns. This proposes an interesting scenario in which the central nervous system, indirectly setting GH profiles through GHRH and somatostatin control, regulates sexual dimorphism of liver activity in accordance with the need for sex-specific steroid metabolism and performance. We describe the influence of the loss of sexual dimorphism in liver gene expression due to altered brain function. Among other many factors, abnormal brain sexual differentiation, xenoestrogen exposure and D2R ablation from neurons dysregulate the GHRH–GH axis, and ultimately modify the liver capacity for adaptive mechanisms. We, therefore, propose that an inefficient brain control of the endocrine growth axis may underlie alterations in several metabolic processes through an indirect influence of sexual dimorphism of liver genes.

Keywords

GH GHRH Dopamine receptor; Hypothalamus Xenoestrogens Liver Gene dimorphism Growth hormone 

Notes

Acknowledgements

This work was supported by Grants from Agencia Nacional de Promoción Científica y Tecnológica, Argentina: PICT 330-2013; PICT 1343-2015; PICT 526-2016, Fundación Rene Barón, Fundación Williams, Consejo Nacional de Investigaciones Científicas y Técnicas; Pfizer 2015 Latin America ASPIRE Endo.

Author Contributions

DB was the main contributor (writing, searching, editing). BB, MCR, LV, PC, AMO, E S, and FLV, discussed ideas, helped in the outline of the review, and corrected the text.

Compliance with Ethical Standards

Conflict of interest

Paolo Catalano was a recipient of Pfizer 2015 Latin America ASPIRE Endo for young investigators. The rest of the authors have nothing to disclose.

Research Involving Human Participants and/or Animals

This is a review and does not involve human participants and/or animals.

Informed Consent

No informed consent is need.

References

  1. Amador-Noguez D, Zimmerman J, Venable S, Darlington G (2005) Gender-specific alterations in gene expression and loss of liver sexual dimorphism in the long-lived Ames dwarf mice. Biochem Biophys Res Commun 332:1086–1100CrossRefGoogle Scholar
  2. Anderson GD (2005) Sex and racial differences in pharmacological response: where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J Womens Health (Larchmt) 14:19–29CrossRefGoogle Scholar
  3. Anderson SP, Dunn C, Laughter A, Yoon L, Swanson C, Stulnig TM, Steffensen KR, Chandraratna RA, Gustafsson JA, Corton JC (2004) Overlapping transcriptional programs regulated by the nuclear receptors peroxisome proliferator-activated receptor alpha, retinoid X receptor, and liver X receptor in mouse liver. Mol Pharmacol 66:1440–1452CrossRefGoogle Scholar
  4. Arnold AP, Gorski RA (1984) Gonadal steroid induction of structural sex differences in the central nervous system. Annu Rev Neurosci 7:413–442CrossRefGoogle Scholar
  5. Becu-Villalobos D, Libertun C (1995) Development of GnRH neuron regulation in the female rat. Cell Mol Neurobiol 15:165–176CrossRefGoogle Scholar
  6. Becu-Villalobos D, Gonzalez Iglesias A, Diaz-Torga GS, Libertun C (1997) Sexual differentiation and gonadotropins secretion in the rat. Cell Mol Neurobiol 17:699–715CrossRefGoogle Scholar
  7. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369CrossRefGoogle Scholar
  8. Bluet-Pajot MT, Mounier F, Durand D, Kordon C (1990) Involvement of dopamine D1 receptors in the control of growth hormone secretion in the rat. J Endocrinol 127:191–196CrossRefGoogle Scholar
  9. Bonci A, Hopf FW (4-8-2005) The dopamine D2 receptor: new surprises from an old friend. Neuron 47: 335–338CrossRefGoogle Scholar
  10. Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450: 899–902CrossRefGoogle Scholar
  11. Chihara K, Minamitani N, Kaji H, Kodama H, Kita T, Fujita T (1984) Noradrenergic modulation of human pancreatic growth hormone-releasing factor (hpGHRF1-44)-induced growth hormone release in conscious male rabbits: involvement of endogenous somatostatin. Endocrinology 114:1402–1406CrossRefGoogle Scholar
  12. Chowen JA, Frago LM, Argente J (2004) The regulation of GH secretion by sex steroids. Eur J Endocrinol 151(Suppl 3):U95–U100CrossRefGoogle Scholar
  13. Clodfelter KH, Holloway MG, Hodor P, Park SH, Ray WJ, Waxman DJ (2006) Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5b-dependent activation of male genes and repression of female genes revealed by microarray analysis. Mol Endocrinol 20:1333–1351CrossRefGoogle Scholar
  14. Colciago A, Negri-Cesi P, Pravettoni A, Mornati O, Casati L, Celotti F (2006) Prenatal Aroclor 1254 exposure and brain sexual differentiation: effect on the expression of testosterone metabolizing enzymes and androgen receptors in the hypothalamus of male and female rats. Reprod Toxicol 22:738–745CrossRefGoogle Scholar
  15. Connerney J, Lau-Corona D, Rampersaud A, Waxman DJ (2017) Activation of male liver chromatin accessibility and STAT5-dependent gene transcription by plasma growth hormone pulses. Endocrinology 158: 1386–1405CrossRefGoogle Scholar
  16. de Mengido IL, Becu-Villalobos D, Libertun C (1987) Sexual differences in the dopaminergic control of LH secretion in the developing rat. Dev Brain Res 35:91–95CrossRefGoogle Scholar
  17. Decourtye L, Mire E, Clemessy M, Heurtier V, Ledent T, Robinson IC, Mollard P, Epelbaum J, Meaney MJ, Garel S, Le Bouc Y, Kappeler L (2017) IGF-1 Induces GHRH Neuronal Axon Elongation during Early Postnatal Life in Mice. PLoS ONE 12:e0170083CrossRefGoogle Scholar
  18. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30:293–342CrossRefGoogle Scholar
  19. Diaz-Torga G, Feierstein C, Libertun C, Gelman D, Kelly MA, Low MJ, Rubinstein M, Becu-Villalobos D (2002) Disruption of the D2 dopamine receptor alters GH and IGF-I secretion and causes dwarfism in male mice. Endocrinology 143: 1270–1279CrossRefGoogle Scholar
  20. Dorner G (1981) Sexual differentiation of the brain. Vit Horm 38:325–381CrossRefGoogle Scholar
  21. Durazzo M, Belci P, Collo A, Prandi V, Pistone E, Martorana M, Gambino R, Bo S (2014) Gender specific medicine in liver diseases: A point of view. World J Gastroenterol 20: 2127–2135CrossRefGoogle Scholar
  22. Ellefson WM, Lakner AM, Hamilton A, McKillop IH, Bonkovsky HL, Steuerwald NM, Huet YM, Schrum LW (2011) Neonatal androgenization exacerbates alcohol-induced liver injury in adult rats, an effect abrogated by estrogen. PLoS ONE 6:e29463CrossRefGoogle Scholar
  23. Fernandez M, Bianchi M, Lux-Lantos V, Libertun C (2009) Neonatal exposure to bisphenol A alters reproductive parameters and gonadotropin releasing hormone signaling in female rats. Environ Health Perspect 117:757–762CrossRefGoogle Scholar
  24. Fernandez M, Bourguignon N, Lux-Lantos V, Libertun C (2010) Neonatal exposure to bisphenol a and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats. Environ Health Perspect 118:1217–1222CrossRefGoogle Scholar
  25. Garcia-Carpizo V, Ruiz-Llorente L, Fraga M, Aranda A (2011) The growing role of gene methylation on endocrine function. J Mol Endocrinol 47:R75–R89CrossRefGoogle Scholar
  26. Garcia-Tornadu I, Rubinstein M, Gaylinn BD, Hill D, Arany E, Low MJ, Diaz-Torga G, Becu-Villalobos D (2006) GH in the dwarf dopaminergic D2 receptor knockout mouse: somatotrope population, GH release, and responsiveness to GH-releasing factors and somatostatin. J Endocrinol 190:611–619CrossRefGoogle Scholar
  27. Ghigo E, Arvat E, Aimaretti G, Broglio F, Giordano R, Camanni F (1998) Diagnostic and therapeutic uses of growth hormone-releasing substances in adult and elderly subjects. Baillieres Clin Endocrinol Metab 12:341–358CrossRefGoogle Scholar
  28. Ghigo E, Broglio F, Arvat E, Maccario M, Papotti M, Muccioli G (2005) Ghrelin: more than a natural GH secretagogue and/or an orexigenic factor. Clin Endocrinol (Oxf) 62:1–17CrossRefGoogle Scholar
  29. Giustina A, Veldhuis JD (1998) Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 19:717–797Google Scholar
  30. Giustina A, Wehrenberg WB (1992) The role of glucocorticoids in the regulation of Growth Hormone secretion: mechanisms and clinical significance. Trends Endocrinol Metab 3:306–311CrossRefGoogle Scholar
  31. Gore AC (2008) Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems. Front Neuroendocrinol 29:358–374CrossRefGoogle Scholar
  32. Gramenzi A, Caputo F, Biselli M, Kuria F, Loggi E, Andreone P, Bernardi M (2006) Review article: alcoholic liver disease-pathophysiological aspects and risk factors. Aliment Pharmacol Ther 24: 1151–1161CrossRefGoogle Scholar
  33. Hao P, Waxman DJ (2018) Functional roles of sex-biased, growth hormone-regulated microRNAs miR-1948 and miR-802 in young adult mouse liver. Endocrinology 159: 1377–1392CrossRefGoogle Scholar
  34. Harkitis P, Daskalopoulos EP, Malliou F, Lang MA, Marselos M, Fotopoulos A, Albucharali G, Konstandi M (2015) Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver. PLoS ONE 10:e0128708CrossRefGoogle Scholar
  35. Hnasko TS, Perez FA, Scouras AD, Stoll EA, Gale SD, Luquet S, Phillips PE, Kremer EJ, Palmiter RD (2006) Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia. Proc Natl Acad Sci USA 103: 8858–8863CrossRefGoogle Scholar
  36. Holloway MG, Laz EV, Waxman DJ (2006) Codependence of growth hormone-responsive, sexually dimorphic hepatic gene expression on signal transducer and activator of transcription 5b and hepatic nuclear factor 4alpha. Mol Endocrinol 20:647–660CrossRefGoogle Scholar
  37. Holloway MG, Miles GD, Dombkowski AA, Waxman DJ (2008) Liver-specific hepatocyte nuclear factor-4alpha deficiency: greater impact on gene expression in male than in female mouse liver. Mol Endocrinol 22:1274–1286CrossRefGoogle Scholar
  38. Hurst JL, Beynon RJ (2004) Scent wars: the chemobiology of competitive signalling in mice. Bioessays 26:1288–1298CrossRefGoogle Scholar
  39. Huseman CA, Hassing JM (1984) Evidence for dopaminergic stimulation of growth velocity in some hypopituitary children. J Clin Endocrinol Metab 58:419–425CrossRefGoogle Scholar
  40. Jaffe CA, Turgeon DK, Lown K, DeMott-Friberg R, Watkins PB (2002) Growth hormone secretion pattern is an independent regulator of growth hormone actions in humans. Am J Physiol Endocrinol Metab 283:E1008–E1015CrossRefGoogle Scholar
  41. Jansson JO, Frohman LA (1987) Differential effects of neonatal and adult androgen exposure on the growth hormone secretory pattern in male rats. Endocrinology 120:1551–1557CrossRefGoogle Scholar
  42. Jin J, Hashizume T (2015) Effects of hypothalamic dopamine on growth hormone-releasing hormone-induced growth hormone secretion and thyrotropin-releasing hormone-induced prolactin secretion in goats. Anim Sci J 86:634–640CrossRefGoogle Scholar
  43. Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22: 3306–3311CrossRefGoogle Scholar
  44. Kitajima N, Chihara K, Hiromi H, Okimura Y, Fujii Y, Sato M, Shakutsui S, Watanabe M, Fufita T (1989) Effects of dopamine on immunoreactive growth hormone-releasing factor and somatostatin secretion from rat hypothalamic slices perfused in vitro. Endocrinology 124:69–76CrossRefGoogle Scholar
  45. Kyrle PA, Minar E, Bialonczyk C, Hirschl M, Weltermann A, Eichinger S (2004) The risk of recurrent venous thromboembolism in men and women. N Engl J Med 350: 2558–2563CrossRefGoogle Scholar
  46. Lau-Corona D, Suvorov A, Waxman DJ (2017) Feminization of male mouse liver by persistent growth hormone stimulation: activation of sex-biased transcriptional networks and dynamic changes in chromatin states. MCB-00301Google Scholar
  47. Lenz KM, Nugent BM, McCarthy MM (2012) Sexual differentiation of the rodent brain: dogma and beyond. Front Neurosci 6:26CrossRefGoogle Scholar
  48. Lim CT, Khoo B (2000) Normal physiology of ACTH and GH release in the hypothalamus and anterior pituitary in manGoogle Scholar
  49. Ling G, Sugathan A, Mazor T, Fraenkel E, Waxman DJ (2010) Unbiased, genome-wide in vivo mapping of transcriptional regulatory elements reveals sex differences in chromatin structure associated with sex-specific liver gene expression. Mol Cell Biol 30:5531–5544CrossRefGoogle Scholar
  50. Low MJ, Otero-Corchon V, Parlow AF, Ramirez JL, Kumar U, Patel YC, Rubinstein M (2001) Somatostatin is required for masculinization of growth hormone-regulated hepatic gene expression but not of somatic growth. J Clin Invest 107:1571–1580CrossRefGoogle Scholar
  51. MacLeod JN, Pampori NA, Shapiro BH (1991) Sex differences in the ultradian pattern of plasma growth hormone concentrations in mice. J Endocrinol 131:395–399CrossRefGoogle Scholar
  52. Massara F, Camanni F (1972) Effect of various adrenergic receptor stimulating and blocking agents on human growth hormone secretion. J Endocrinol 54:195–206CrossRefGoogle Scholar
  53. McCarthy GF, Beaudet A, Tannenbaum GS (1992) Colocalization of somatostatin receptors and growth hormone-releasing factor immunoreactivity in neurons of the rat arcuate nucleus. Neuroendocrinology 56:18–24CrossRefGoogle Scholar
  54. McIntosh I, Bishop JO (1989) Differential expression in male and female mouse liver of very similar mRNAs specified by two group 1 major urinary protein genes. Mol Cell Biol 9:2202–2207CrossRefGoogle Scholar
  55. McRae S, Tran H, Schulman S, Ginsberg J, Kearon C (2006) Effect of patient’s sex on risk of recurrent venous thromboembolism: a meta-analysis. Lancet 368: 371–378CrossRefGoogle Scholar
  56. Meibohm B, Beierle I, Derendorf H (2002) How important are gender differences in pharmacokinetics? Clin Pharmacokinet 41:329–342CrossRefGoogle Scholar
  57. Miyake H, Nagashima K, Onigata K, Nagashima T, Takano Y, Morikawa A (1999) Allelic variations of the D2 dopamine receptor gene in children with idiopathic short stature. J Hum Genet 44:26–29CrossRefGoogle Scholar
  58. Monje L, Varayoud J, Luque EH, Ramos JG (2007) Neonatal exposure to bisphenol A modifies the abundance of estrogen receptor alpha transcripts with alternative 5′-untranslated regions in the female rat preoptic area. J Endocrinol 194:201–212CrossRefGoogle Scholar
  59. Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O, Nader SH, Buchheimer N, Ehrenkaufer RL, Nader MA (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5:169–174CrossRefGoogle Scholar
  60. Muller EE, Locatelli V, Cocchi D (1999) Neuroendocrine control of growth hormone secretion. Physiol Rev 79:511–607CrossRefGoogle Scholar
  61. Negri-Cesi P, Colciago A, Pravettoni A, Casati L, Conti L, Celotti F (2008) Sexual differentiation of the rodent hypothalamus: hormonal and environmental influences. J Steroid Biochem Mol Biol 109:294–299CrossRefGoogle Scholar
  62. Noain D, Perez-Millan MI, Bello EP, Luque GM, Casas CR, Gelman DM, Peper M, Tornadu IG, Low MJ, Becu-Villalobos D, Rubinstein M (2013) Central dopamine D2 receptors regulate growth-hormone-dependent body growth and pheromone signaling to conspecific males. J Neurosci 33: 5834–5842CrossRefGoogle Scholar
  63. Nugent BM, McCarthy MM (2011) Epigenetic underpinnings of developmental sex differences in the brain. Neuroendocrinology 93:150–158CrossRefGoogle Scholar
  64. Oshida K, Vasani N, Waxman DJ, Corton JC (2016a) Disruption of STAT5b-regulated sexual dimorphism of the liver transcriptome by diverse factors is a common event. PLoS ONE 11:e0148308CrossRefGoogle Scholar
  65. Oshida K, Waxman DJ, Corton JC (2016b) Chemical and hormonal effects on STAT5b-dependent sexual dimorphism of the liver transcriptome. PLoS ONE 11:e0150284CrossRefGoogle Scholar
  66. Palmiter RD (2008) Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci 1129::35–46CrossRefGoogle Scholar
  67. Potter JJ, Mezey E (2001) Effect of STAT5b on rat liver alcohol dehydrogenase. Arch Biochem Biophys 391: 41–48CrossRefGoogle Scholar
  68. Powers M (2012) GABA supplementation and growth hormone response. Med Sport Sci 59::36–46CrossRefGoogle Scholar
  69. Quintanilla ME, Tampier L, Sapag A, Gerdtzen Z, Israel Y (2007) Sex differences, alcohol dehydrogenase, acetaldehyde burst, and aversion to ethanol in the rat: a systems perspective. Am J Physiol Endocrinol Metab 293:E531–E537CrossRefGoogle Scholar
  70. Ramirez MC, Luque GM, Ornstein AM, Becu-Villalobos D (2010) Differential neonatal testosterone imprinting of GH-dependent liver proteins and genes in female mice. J Endocrinol 207:301–308CrossRefGoogle Scholar
  71. Ramirez MC, Bourguignon NS, Bonaventura MM, Lux-Lantos V, Libertun C, Becu-Villalobos D (2012) Neonatal xenoestrogen exposure alters growth hormone-dependent liver proteins and genes in adult female rats. Toxicol Lett 213: 325–331CrossRefGoogle Scholar
  72. Ramirez MC, Zubeldia-Brenner L, Wargon V, Ornstein AM, Becu-Villalobos D (2014) Expression and methylation status of female-predominant GH-dependent liver genes are modified by neonatal androgenization in female mice. Mol Cell Endocrinol 382: 825–834CrossRefGoogle Scholar
  73. Ramirez MC, Ornstein A, Luque GM, Perez-Millan MI, Garcia-Tornadu I, Rubinstein M, Becu-Villalobos D (2015) Pituitary and brain dopamine D2 receptors regulate liver gene sexual dimorphism. Endocrinology 156:1040–1051CrossRefGoogle Scholar
  74. Rane A, Liu Z, Levol R, Bjelfman C, Thyr C, Ericson H, Hansson T, Henderson C, Wolf CR (1996) Differential effects of neuroleptic agents on hepatic cytochrome P-450 isozymes in the male rat. Biochim Biophys Acta 1291: 60–66CrossRefGoogle Scholar
  75. Rogers AB, Theve EJ, Feng Y, Fry RC, Taghizadeh K, Clapp KM, Boussahmain C, Cormier KS, Fox JG (2007) Hepatocellular carcinoma associated with liver-gender disruption in male mice. Cancer Res 67: 11536–11546Google Scholar
  76. Roy AK, Chatterjee B (1983) Sexual dimorphism in the liver. Annu Rev Physiol 45::37–50CrossRefGoogle Scholar
  77. Simon FR, Fortune J, Iwahashi M, Sutherland E (2002) Sexual dimorphic expression of ADH in rat liver: importance of the hypothalamic-pituitary-liver axis. Am J Physiol Gastrointest Liver Physiol 283:G646–G655CrossRefGoogle Scholar
  78. Steyn FJ, Tolle V, Chen C, Epelbaum J (2016) Neuroendocrine regulation of growth hormone secretion. Compr Physiol 6: 687–735CrossRefGoogle Scholar
  79. Sugathan A, Waxman DJ (2013) Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol Cell Biol 33:3594–3610CrossRefGoogle Scholar
  80. Takahashi Y, Iida K, Takahashi K, Yoshioka S, Fukuoka H, Takeno R, Imanaka M, Nishizawa H, Takahashi M, Seo Y, Hayashi Y, Kondo T, Okimura Y, Kaji H, Kitazawa R, Kitazawa S, Chihara K (2007) Growth hormone reverses nonalcoholic steatohepatitis in a patient with adult growth hormone deficiency. Gastroenterology 132:938–943CrossRefGoogle Scholar
  81. Thangavel C, Garcia MC, Shapiro BH (2004) Intrinsic sex differences determine expression of growth hormone-regulated female cytochrome P450s. Mol Cell Endocrinol 220: 31–39CrossRefGoogle Scholar
  82. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, Bock R, Klein R, Schutz G (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23:99–103CrossRefGoogle Scholar
  83. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW (1997) Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA 94: 7239–7244CrossRefGoogle Scholar
  84. Vidarsdottir S, Walenkamp MJ, Pereira AM, Karperien M, van Doorn J, van Duyvenvoorde HA, White S, Breuning MH, Roelfsema F, Kruithof MF, van Dissel J, Janssen R, Wit JM, Romijn JA (2006) Clinical and biochemical characteristics of a male patient with a novel homozygous STAT5b mutation. J Clin Endocrinol Metab 91:3482–3485CrossRefGoogle Scholar
  85. Vijayakumar A, Yakar S, LeRoith D (2011) The intricate role of growth hormone in metabolism. Front Endocrinol (Lausanne) 2:32CrossRefGoogle Scholar
  86. Waalkes MP, Liu J, Chen H, Xie Y, Achanzar WE, Zhou YS, Cheng ML, Diwan BA (2004) Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero. J Natl Cancer Inst 96: 466–474CrossRefGoogle Scholar
  87. Wauthier V, Waxman DJ (2008) Sex-specific early growth hormone response genes in rat liver. Mol Endocrinol 22:1962–1974CrossRefGoogle Scholar
  88. Wauthier V, Sugathan A, Meyer RD, Dombkowski AA, Waxman DJ (2010) Intrinsic sex differences in the early growth hormone responsiveness of sex-specific genes in mouse liver. Mol Endocrinol 24:667–678CrossRefGoogle Scholar
  89. Waxman DJ, Holloway MG (2009) Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 76:215–228CrossRefGoogle Scholar
  90. Waxman DJ, O’Connor C (2006) Growth hormone regulation of sex-dependent liver gene expression. Mol Endocrinol 20:2613–2629CrossRefGoogle Scholar
  91. Wehrenberg WB, Giustina A (1992) Basic counterpoint: mechanisms and pathways of gonadal steroid modulation of growth hormone secretion. Endocr Rev 13:299–308Google Scholar
  92. Wehrenberg W, Giustina A (2000) Neuroendocrine regulation of Growth Hormone secretion. In: Conn M, Freeman ME (eds.) Totowa Neuroendocrinology in physiology and medicine. Humana Press, New York, pp 181–195CrossRefGoogle Scholar
  93. Wilson CA, Davies DC (2007) The control of sexual differentiation of the reproductive system and brain. Reproduction 133:331–359CrossRefGoogle Scholar
  94. Wojcikowski J, Golembiowska K, Daniel WA (2007) The regulation of liver cytochrome p450 by the brain dopaminergic system. Curr Drug Metab 8:631–638CrossRefGoogle Scholar
  95. Wong JH, Dukes J, Levy RE, Sos B, Mason SE, Fong TS, Weiss EJ (2008) Sex differences in thrombosis in mice are mediated by sex-specific growth hormone secretion patterns. J Clin Invest 118:2969–2978Google Scholar
  96. Zama AM, Uzumcu M (2010) Epigenetic effects of endocrine-disrupting chemicals on female reproduction: An ovarian perspective. Front Neuroendocrinol 31: 420–439CrossRefGoogle Scholar
  97. Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R, Gavin B, Mann J, Vassileva G, McMahon A (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12:11–24CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Belen Brie
    • 1
  • Maria Cecilia Ramirez
    • 2
  • Catalina De Winne
    • 1
  • Felicitas Lopez Vicchi
    • 1
  • Luis Villarruel
    • 3
  • Eleonora Sorianello
    • 1
  • Paolo Catalano
    • 3
  • Ana María Ornstein
    • 1
  • Damasia Becu-Villalobos
    • 1
    Email author
  1. 1.Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  2. 2.Amgen MéxicoSanta FeMexico
  3. 3.Departament of Micro y Nanotechnology, Instituto de Nanociencia y NanotecnologíaComisión Nacional de Energia Atomica-Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina

Personalised recommendations