Advertisement

Cellular and Molecular Neurobiology

, Volume 38, Issue 8, pp 1551–1554 | Cite as

N-Terminal Fusion Potentiates α-Synuclein Secretion

  • Björn H. Falkenburger
Commentary
  • 132 Downloads

Parkinson’s disease is a progressive neurodegenerative disease characterised histologically by aggregates of misfolded α-synuclein. Large accumulations of α-synuclein aggregates are termed Lewy bodies. Based on the distribution of Lewy bodies in the brain, Braak suggested about 15 years ago that α-synuclein aggregates spread through the brain along neuronal projections (Braak et al. 2003). In this theory, Lewy bodies are first found in the brainstem and olfactory bulb and subsequently spread to midbrain and other structures, reaching cortex in late stages of the disease. Support for this theory came from the demonstration that Lewy pathology is transferred from diseased brain into grafts of fetal mesencephalic neurons (Kordower et al. 2008; Li et al. 2008), and from the clinical description of “prodromal” or “premotor” stages of PD with olfactory deficits, gastrointestinal problems and specific sleep disturbances that plausibly correspond to Lewy pathology in the olfactory bulb and...

References

  1. Bae E-J, Yang N-Y, Song M, Lee CS, Lee JS, Jung BC, Lee H-J, Kim S, Masliah E, Sardi SP, Lee S-J (2014) Glucocerebrosidase depletion enhances cell-to-cell transmission of α-synuclein. Nat Commun 5:4755CrossRefGoogle Scholar
  2. Bersuker K, Brandeis M, Kopito RR (2016) Protein misfolding specifies recruitment to cytoplasmic inclusion bodies. J Cell Biol 213:229–241CrossRefGoogle Scholar
  3. Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211CrossRefGoogle Scholar
  4. Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25:364–372CrossRefGoogle Scholar
  5. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, Vanderburg CR, McLean PJ (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42CrossRefGoogle Scholar
  6. de Oliveira RM et al (2017) The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biol 15:e2000374CrossRefGoogle Scholar
  7. Dimant H, Kalia SK, Kalia LV, Zhu LN, Kibuuka L, Ebrahimi-Fakhari D, McFarland NR, Fan Z, Hyman BT, McLean PJ (2013) Direct detection of alpha synuclein oligomers in vivo. Acta Neuropathol Commun 1:6CrossRefGoogle Scholar
  8. Ejlerskov P, Rasmussen I, Nielsen TT, Bergström A-L, Tohyama Y, Jensen PH, Vilhardt F (2013) Tubulin polymerization-promoting protein (TPPP/p25α) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome-lysosome fusion. J Biol Chem 288:17313–17335CrossRefGoogle Scholar
  9. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-produced -synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30:6838–6851CrossRefGoogle Scholar
  10. Falkenburger BH, Saridaki T, Dinter E (2016) Cellular models for Parkinson’s disease. J Neurochem 139(1):121–130CrossRefGoogle Scholar
  11. Fusco G, De Simone A, Gopinath T, Vostrikov V, Vendruscolo M, Dobson CM, Veglia G (2014) Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nat Commun 5:3827CrossRefGoogle Scholar
  12. Gustafsson G, Lööv C, Persson E, Lázaro DF, Takeda S, Bergström J, Erlandsson A, Sehlin D, Balaj L, György B, Hallbeck M, Outeiro TF, Breakefield XO, Hyman BT, Ingelsson M (2018) Secretion and uptake of α-synuclein via extracellular vesicles in cultured cells. Cell Mol Neurobiol.  https://doi.org/10.1007/s10571-018-0622-5 CrossRefPubMedGoogle Scholar
  13. Helwig M, Klinkenberg M, Rusconi R, Musgrove RE, Majbour NK, El-Agnaf OMA, Ulusoy A, Di Monte DA (2016) Brain propagation of transduced α-synuclein involves non-fibrillar protein species and is enhanced in α-synuclein null mice. Brain 139:856–870  https://doi.org/10.1093/brain/awv376 CrossRefGoogle Scholar
  14. Kimura T, Jia J, Kumar S, Choi SW, Gu Y, Mudd M, Dupont N, Jiang S, Peters R, Farzam F, Jain A, Lidke KA, Adams CM, Johansen T, Deretic V (2017) Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. EMBO J 36:42–60CrossRefGoogle Scholar
  15. Klingelhoefer L, Reichmann H (2017) The gut and nonmotor symptoms in Parkinson’s disease. In: Nonmotor Parkinson’s: the hidden face-management and the hidden face of related disorders. International Review of Neurobiology. Elsevier, New York, pp 787–809Google Scholar
  16. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530CrossRefGoogle Scholar
  17. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506CrossRefGoogle Scholar
  18. Krumova P, Meulmeester E, Garrido M, Tirard M, Hsiao H-H, Bossis G, Urlaub H, Zweckstetter M, Kügler S, Melchior F, Bähr M, Weishaupt JH (2011) Sumoylation inhibits alpha-synuclein aggregation and toxicity. J Cell Biol 194:49–60CrossRefGoogle Scholar
  19. Kunadt M et al (2015) Extracellular vesicle sorting of α-synuclein is regulated by sumoylation. Acta Neuropathol 129:695–713CrossRefGoogle Scholar
  20. Lázaro DF, Rodrigues EF, Langohr R, Shahpasandzadeh H, Ribeiro T, Guerreiro P, Gerhardt E, Kröhnert K, Klucken J, Pereira MD, Popova B, Kruse N, Mollenhauer B, Rizzoli SO, Braus GH, Danzer KM, Outeiro TF (2014) Systematic comparison of the effects of alpha-synuclein mutations on its oligomerization and aggregation. PLoS Genet 10:e1004741CrossRefGoogle Scholar
  21. Lee H-J, Cho E-D, Lee KW, Kim J-H, Cho S-G, Lee S-J (2013) Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein. Exp Mol Med 45:e22CrossRefGoogle Scholar
  22. Li J-Y, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Björklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503CrossRefGoogle Scholar
  23. Masuda-Suzukake M, Nonaka T, Hosokawa M, Kubo M, Shimozawa A, Akiyama H, Hasegawa M (2014) Pathological alpha-synuclein propagates through neural networks. Acta Neuropathol Commun 2:88CrossRefGoogle Scholar
  24. Ngolab J, Trinh I, Rockenstein E, Mante M, Florio J, Trejo M, Masliah D, Adame A, Masliah E, Rissman RA (2017) Brain-derived exosomes from dementia with Lewy bodies propagate α-synuclein pathology. Acta Neuropathol Commun 5:46CrossRefGoogle Scholar
  25. Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T, Saido TC (2013) Aβ secretion and plaque formation depend on autophagy. Cell Rep 5:61–69CrossRefGoogle Scholar
  26. Opazo F, Krenz A, Heermann S, Schulz JB, Falkenburger BH (2008) Accumulation and clearance of -synuclein aggregates demonstrated by time-lapse imaging. J Neurochem 106:529–540CrossRefGoogle Scholar
  27. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V (2015) α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–344CrossRefGoogle Scholar
  28. Poehler A-M, Xiang W, Spitzer P, May VEL, Meixner H, Rockenstein E, Chutna O, Outeiro TF, Winkler J, Masliah E, Klucken J (2014) Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment. Autophagy 10:2171–2192CrossRefGoogle Scholar
  29. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601CrossRefGoogle Scholar
  30. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383CrossRefGoogle Scholar
  31. Saridaki T, Nippold M, Dinter E, Roos A, Diederichs L, Fensky L, Schulz JB, Falkenburger BH (2018) FYCO1 mediates clearance of α-synuclein aggregates through a Rab7-dependent mechanism. J Neurochem 146:474–492CrossRefGoogle Scholar
  32. Stopschinski BE, Diamond MI (2017) The prion model for progression and diversity of neurodegenerative diseases. Lancet Neurol 16:323–332CrossRefGoogle Scholar
  33. Stuendl A, Kunadt M, Kruse N, Bartels C, Moebius W, Danzer KM, Mollenhauer B, Schneider A (2015) Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 346: 481–494Google Scholar
  34. Vicente Miranda H et al (2017) Glycation potentiates α-synuclein-associated neurodegeneration in synucleinopathies. Brain 140:1399–1419CrossRefGoogle Scholar
  35. Volpicelli-Daley LA, Luk KC, Lee VMY (2014) Addition of exogenous α-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous α-synuclein to Lewy body and Lewy neurite-like aggregates. Nat Protoc 9:2135–2146CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
Corrected publication October/2018

Authors and Affiliations

  1. 1.Department of NeurologyRWTH Aachen UniversityAachenGermany
  2. 2.JARA-Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich and RWTH Aachen UniversityAachenGermany

Personalised recommendations