Advertisement

Cellular and Molecular Neurobiology

, Volume 39, Issue 4, pp 523–537 | Cite as

Allopregnanolone and Progesterone in Experimental Neuropathic Pain: Former and New Insights with a Translational Perspective

  • Susana Laura GonzálezEmail author
  • Laurence Meyer
  • María Celeste Raggio
  • Omar Taleb
  • María Florencia Coronel
  • Christine Patte-Mensah
  • Ayikoe Guy Mensah-NyaganEmail author
Review Paper

Abstract

In the last decades, an active and stimulating area of research has been devoted to explore the role of neuroactive steroids in pain modulation. Despite challenges, these studies have clearly contributed to unravel the multiple and complex actions and potential mechanisms underlying steroid effects in several experimental conditions that mimic human chronic pain states. Based on the available data, this review focuses mainly on progesterone and its reduced derivative allopregnanolone (also called 3α,5α-tetrahydroprogesterone) which have been shown to prevent or even reverse the complex maladaptive changes and pain behaviors that arise in the nervous system after injury or disease. Because the characterization of new related molecules with improved specificity and enhanced pharmacological profiles may represent a crucial step to develop more efficient steroid-based therapies, we have also discussed the potential of novel synthetic analogs of allopregnanolone as valuable molecules for the treatment of neuropathic pain.

Keywords

Neurosteroids Neuroactive steroids Progesterone Allopregnanolone Neuropathic pain Spinal cord Dorsal root ganglia Mitochondria 

Notes

Acknowledgements

This work was supported by Grants from Consejo Nacional de Investigaciones Científicas y Tecnológicas (PIP 112 20150100266), Fundación René Barón and Fundación Williams, Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, and Association Ti’toine de Normandie. These funding institutions/organizations had no role in the collection, analysis, and interpretation of data, in writing the report, and in the decision to submit the article for publication.

Author Contributions

S.L.G and A.G.M-N conceived, designed, and wrote the manuscript. L.M., M.C.R., and C.P-M designed the figures. L.M., M.C.R., O.T., M.F.C., and C.P-M revised and critically contributed to the approved final version.

Compliance with Ethical Standards

Conflict of interest

None to declare.

References

  1. Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27(12):639–645Google Scholar
  2. Afrazi S, Esmaeili-Mahani S (2014) Allopregnanolone suppresses diabetes-induced neuropathic pain and motor deficit through inhibition of GABAA receptor down-regulation in the spinal cord of diabetic rats. Iran J Basic Med Sci 17(5):312–317Google Scholar
  3. Balasubramanian B, Portillo W, Reyna A, Chen JZ, Moore AN, Dash PK, Mani SK (2008) Nonclassical mechanisms of progesterone action in the brain: I. Protein kinase C activation in the hypothalamus of female rats. Endocrinology 149(11):5509–5517Google Scholar
  4. Balthazart J, Choleris E, Remage-Healey L (2018) Steroids and the brain: 50 years of research, conceptual shifts and the ascent of non-classical and membrane-initiated actions. Horm Behav 99:1–8Google Scholar
  5. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284Google Scholar
  6. Baulieu EE (1999) Neuroactive neurosteroids: dehydroepiandrosterone (DHEA) and DHEA sulphate. Acta Paediatr Suppl 88(433):78–80Google Scholar
  7. Baulieu EE (2001) Neurosteroids, their role in brain physiology: neurotrophycity, memory. Aging J Bull Acad Natl Med 185:349–372Google Scholar
  8. Baulieu EE, Robel P (1990) Neurosteroids: a new brain function? J Steroid Biochem Mol Biol 37(3):395–403Google Scholar
  9. Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6(7):565–575Google Scholar
  10. Boonyaratanakornkit V, Bi Y, Rudd M, Edwards DP (2008) The role and mechanism of progesterone receptor activation of extra-nuclear signaling pathways in regulating gene transcription and cell cycle progression. Steroids 73:922–928Google Scholar
  11. Brinton RD (2013) Neurosteroids as regenerative agents in the brain: therapeutic implications. Nat Rev Endocrinol 9(4):241–250Google Scholar
  12. Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE, Morgan TE, Pike CJ, Mack WJ, Stanczyk FZ, Nilsen J (2008) Progesterone receptors: form and function in brain. Front Neuroendocrinol 29(2):313–339Google Scholar
  13. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248Google Scholar
  14. Cairns BE, Arendt-Nielsen L, Sacerdote P (2015) Perspectives in pain research 2014: neuroinflammation and glial cell activation: the cause of transition from acute to chronic pain? Scand J Pain 6(1):3–6Google Scholar
  15. Castany S, Gris G, Vela JM, Verdú E, Boadas-Vaello P (2018) Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice. Sci Rep 8(1):3873Google Scholar
  16. Caudle RM, Perez FM, King C, Yu CG, Yezierski RP (2003) N-methyl-D-aspartate receptor subunit expression and phosphorylation following excitotoxic spinal cord injury in rats. Neurosci Lett 349(1):37–40Google Scholar
  17. Cermenati G, Giatti S, Cavaletti G, Bianchi R, Maschi O, Pesaresi M, Abbiati F, Volonterio A, Saez E, Caruso D, Melcangi RC, Mitro N (2010) Activation of the liver X receptor increases neuroactive steroid levels and protects from diabetes-induced peripheral neuropathy. J Neurosci 30(36):11896–11901Google Scholar
  18. Chen JQ, Cammarata PR, Baines CP, Yager JD (2009) Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta 1793(10):1540–1570Google Scholar
  19. Choi SR, Roh DH, Yoon SY, Kwon SG, Choi HS, Han HJ, Beitz AJ, Lee JH (2016) Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice. Neuropharmacology 111:34–46Google Scholar
  20. Coirini H, Gouezou M, Lier P, Delespierre B, Pianos A, Eychenne B, Schumacher M, Guennoun R (2002) 3-beta hydroxysteroid dehydrogenase expression in rat spinal cord. Neuroscience 113:883–891Google Scholar
  21. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN (2017) Neuropathic pain. Nat Rev Dis Primers 3:17002Google Scholar
  22. Coronel MF, Labombarda F, Villar MJ, De Nicola AF, González SL (2011a) Progesterone prevents allodynia after experimental spinal cord injury. J Pain 12(1):71–83Google Scholar
  23. Coronel MF, Labombarda F, Roig P, Villar MJ, De Nicola AF, González SL (2011b) Progesterone prevents nerve injury-induced allodynia and spinal NMDA receptor upregulation in rats. Pain Med 12(8):1249–1261Google Scholar
  24. Coronel MF, Labombarda F, De Nicola AF, Gonzalez SL (2014) Progesterone reduces the expression of spinal cycloxygenase-2 and inducible nitric oxide synthase and prevents allodynia in a rat model of central neuropathic pain. Eur J Pain 18(3):348–359Google Scholar
  25. Coronel MF, Raggio MC, Adler NS, De Nicola AF, Labombarda F, Gonzalez SL (2016a) Progesterone modulates pro-inflammatory cytokine expression profile after spinal cord injury: implications for neuropathic pain. J Neuroimmunol 292:85–92Google Scholar
  26. Coronel MF, Sanchez Granel ML, Raggio MC, Adler NS, De Nicola AF, Labombarda F, Gonzalez SL (2016b) Temporal changes in the expression of the translocator protein TSPO and the steroidogenic enzyme 5a-reductase in the dorsal spinal cord of animals with neuropathic pain: effects of progesterone administration. Neurosci Lett 624:23–28Google Scholar
  27. Corpéchot C, Robel P, Axelson M, Sjövall J, Baulieu EE (1981) Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci USA 78(8):4704–4707Google Scholar
  28. Corpéchot C, Synguelakis M, Talha S, Axelson M, Sjövall J, Vihko R, Baulieu EE, P. R (1983) Pregnenolone and its sulfate ester in the rat brain. Brain Res 270(1):119–125Google Scholar
  29. Costigan M, Scholz J, Woolf CJ (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 32:1–32Google Scholar
  30. Dableh LJ, Henry JL (2011) Progesterone prevents development of neuropathic pain in a rat model: timing and duration of treatment are critical. J Pain Res 4:91–101Google Scholar
  31. De Nicola AF, Coronel MF, Garay LI, Gargiulo-Monachelli G, Gonzalez Deniselle MC, Gonzalez SL, Labombarda F, Meyer M, Guennoun R, Schumacher M (2013) Therapeutic effects of progesterone in animal models of neurological disorders. CNS & Neurol Disord Drug Targets 12(8):1205–1218Google Scholar
  32. De Nicola AF, Garay L, Meyer M, Guennoun R, Sitruk-Ware R, Schumacher M, Gonzalez Deniselle MC (2018) Neurosteroidogenesis and progesterone anti-inflammatory/neuroprotective effects. J Neuroendocrinol 30(2):e12502Google Scholar
  33. Do Rego JL, Vaudry H (2016) Comparative aspects of neurosteroidogenesis: from fish to mammals. Gen Comp Endocrinol 227:120–129Google Scholar
  34. Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H (2009) Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 30(3):259–301Google Scholar
  35. Doyle T, Bryant L, Muscoli C, Cuzzocrea S, Esposito E, Chen Z, Salvemini D (2010) Spinal NADPH oxidase is a source of superoxide in the development of morphine-induced hyperalgesia and antinociceptive tolerance. Neurosci Lett 483(2):85–89Google Scholar
  36. Finnerup NB, Haroutounian S, Kamerman P, Baron R, Bennett DL, Bouhassira D, Cruccu G, Freeman R, Hansson P, Nurmikko T, Raja SN, Rice AS, Serra J, Smith BH, Treede RD, Jensen TS (2016) Neuropathic pain: an updated grading system for research and clinical practice. Pain 157(8):1599–1606Google Scholar
  37. Flatters SJ (2015) The contribution of mitochondria to sensory processing and pain. Prog Mol Biol Transl Sci 131:119–146Google Scholar
  38. Fréchou M, Zhang S, Liere P, Delespierre B, Soyed N, Pianos A, Schumacher M, Mattern C, Guennoun R (2015) Intranasal delivery of progesterone after transient ischemic stroke decreases mortality and provides neuroprotection. Neuropharmacology 97:394–403Google Scholar
  39. Frye CA, Walf AA, Kohtz AS, Zhu Y (2013) Membrane progestin receptors in the midbrain ventral tegmental area are required for progesterone-facilitated lordosis of rats. Horm Behav 64(3):539–545Google Scholar
  40. Frye CA, Koonce CJ, Walf AA (2014) Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor. Front Cell Neurosci 8:106Google Scholar
  41. Gaignard P, Liere P, Thérond P, Schumacher M, Slama A, Guennoun R (2017) Role of sex hormones on brain mitochondrial function, with special reference to aging and neurodegenerative diseases. Front Aging Neurosci 9:406Google Scholar
  42. Gao X, Kim HK, Chung JM, Chung K (2005) Enhancement of NMDA receptor phosphorylation of the spinal dorsal horn and nucleus gracilis neurons in neuropathic rats. Pain 116(1–2):62–72Google Scholar
  43. Gao X, Kim HK, Chung JM, Chung K (2007) Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain 131(3):262–271Google Scholar
  44. Garay LI, González Deniselle MC, Brocca ME, Lima A, Roig P, De Nicola AF (2012) Progesterone down-regulates spinal cord inflammatory mediators and increases myelination in experimental autoimmune encephalomyelitis. Neuroscience 226:40–50Google Scholar
  45. Garcia-Ovejero D, González S, Paniagua-Torija B, Lima A, Molina-Holgado E, De Nicola AF, Labombarda F (2014) Progesterone reduces secondary damage, preserves white matter, and improves locomotor outcome after spinal cord contusion. J Neurotrauma 31(9):857–871Google Scholar
  46. Garcia-Segura LM, Melcangi RC (2006) Steroids and glial cell function. Glia 54(6):485–498Google Scholar
  47. Gardoni F, Boraso M, Zianni E, Corsini E, Galli CL, Cattabeni F, Marinovich M, Di Luca M, Viviani B (2011) Distribution of interleukin-1 receptor complex at the synaptic membrane driven by interleukin-1β and NMDA stimulation. J Neuroinflammation 18(1):14.  https://doi.org/10.1186/1742-2094-1188-1114 Google Scholar
  48. Giatti S, Romano S, Pesaresi M, Cermenati G, Mitro N, Caruso D, Tetel MJ, Garcia-Segura LM, Melcangi RC (2015) Neuroactive steroids and the peripheral nervous system: an update. Steroids 103:23–30Google Scholar
  49. González SL, Coronel MF (2016) Beyond reproduction: the role of progesterone in neuropathic pain after spinal cord injury. Neural Regen Res 11(8):1238–1240Google Scholar
  50. González SL, Labombarda F, González-Deniselle MC, Guennoun R, Schumacher M, De Nicola AF (2004) Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. Neuroscience 125:605–614Google Scholar
  51. González SL, López-Costa JJ, Labombarda F, Gonzalez Deniselle MC, Guennoun R, Schumacher M, De Nicola AF (2009) Progesterone effects on neuronal ultrastructure and expression of microtubule-associated protein 2 (MAP2) in rats with acute spinal cord injury. Cell Mol Neurobiol 29(1):27–39Google Scholar
  52. Gonzalez Deniselle MC, Garay L, Meyer M, Gargiulo-Monachelli G, Labombarda F, Gonzalez S, Guennoun R, Schumacher M, De Nicola AF (2011) Experimental and clinical evidence for the protective role of progesterone in motoneuron degeneration and neuroinflammation. Horm Mol Biol Clin Investig 7(3):403–411Google Scholar
  53. Goodchild CS, Guo Z, Nadeson R (2000) Antinociceptive properties of neurosteroids I. Spinally-mediated antinociceptive effects of water-soluble aminosteroids. Pain 88(1):23–29Google Scholar
  54. Grace PM, Gaudet AD, Staikopoulos V, Maier SF, Hutchinson MR, Salvemini D, Watkins LR (2016) Nitroxidative signaling mechanisms in pathological pain. Trends Neurosci 39(12):862–879Google Scholar
  55. Grimm A, Lim YA, Mensah-Nyagan AG, Götz J, Eckert A (2012) Alzheimer’s disease, oestrogen and mitochondria: an ambiguous relationship. Mol Neurobiol 46(1):151–160Google Scholar
  56. Grimm A, Schmitt K, Lang UE, Mensah-Nyagan AG, Eckert A (2014) Improvement of neuronal bioenergetics by neurosteroids: implications for age-related neurodegenerative disorders. Biochim Biophys Acta 1842:2427–2438Google Scholar
  57. Grimm A, Biliouris EE, Lang UE, Götz J, Mensah-Nyagan AG, Eckert A (2016a) Sex hormone-related neurosteroids differentially rescue bioenergetic deficits induced by amyloid-β or hyperphosphorylated tau protein. Cell Mol Life Sci 73(1):201–215Google Scholar
  58. Grimm A, Mensah-Nyagan AG, Eckert A (2016b) Alzheimer, mitochondria and gender. Neurosci Biobehav Rev 67:89–101Google Scholar
  59. Grossman SD, Wolfe BB, Yasuda RP, Wrathall JR (2000) Changes in NMDA receptor subunit expression in response to contusive spinal cord injury. J Neurochem 75(1):174–184Google Scholar
  60. Guennoun R, Meffre D, Labombarda F, Gonzalez SL, Gonzalez Deniselle MC, Stein DG, De Nicola AF, Schumacher M (2008) The membrane-associated progesterone-binding protein 25-Dx: expression, cellular localization and up-regulation after brain and spinal cord injuries. Brain Res Rev 57(2):493–505Google Scholar
  61. Guennoun R, Labombarda F, Gonzalez Deniselle MC, Liere P, De Nicola AF, Schumacher M (2015) Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. J Steroid Biochem Mol Biol 146:48–61Google Scholar
  62. Guo BL, Sui BD, Wang XY, Wei YY, Huang J, Chen J, Wu SX, Li YQ, Wang YY, Yang YL (2013) Significant changes in mitochondrial distribution in different pain models of mice. Mitocondrion 13:292–297Google Scholar
  63. Gwak YS, Hassler SE, Hulsebosch CE (2013) Reactive oxygen species contribute to neuropathic pain and locomotor dysfunction via activation of CamKII in remote segments following spinal cord contusion injury in rats. Pain 154(9):1699–1708Google Scholar
  64. Gwak YS, Hulsebosch CE, Leem JW (2017) Neuronal-glial interactions maintain chronic neuropathic pain after spinal cord injury. Neural Plast.  https://doi.org/10.1155/2017/2480689 Google Scholar
  65. Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444(7118):486–489Google Scholar
  66. Hulsebosch CE, Hains BC, Crown ED, Carlton SM (2009) Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev 60(1):202–213Google Scholar
  67. Inquimbert P, Moll M, Latremoliere A, Tong CK, Whang J, Sheehan GF, Smith BM, Korb E, Athié MCP, Babaniyi O, Ghasemlou N, Yanagawa Y, Allis CD, Hof PR, Scholz J (2018) NMDA receptor activation underlies the loss of spinal dorsal horn neurons and the transition to persistent pain after peripheral nerve injury. Cell Rep 23:2678–2689Google Scholar
  68. Irwin RW, Solinsky CM, Brinton RD (2014) Frontiers in therapeutic development of allopregnanolone for Alzheimer’s disease and other neurological disorders. Front Cell Neurosci 8:203Google Scholar
  69. Irwin RW, Solinsky CM, Loya CM, Salituro FG, Rodgers KE, Bauer G, Rogawski MA, Brinton RD (2015) Allopregnanolone preclinical acute pharmacokinetic and pharmacodynamic studies to predict tolerability and efficacy for Alzheimer’s disease. PLoS ONE 10(6):e0128313Google Scholar
  70. Jensen TS, Finnerup NB (2014) Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol 13(9):924–935Google Scholar
  71. Jensen TS, Gottrup H, Sindrup SH, Bach FW (2001) The clinical picture of neuropathic pain. Eur J Pharmacol 429(1–3):1–11Google Scholar
  72. Jensen TS, Baron R, Haanpää M, Kalso E, Loeser JD, Rice AS, Treede RD (2011) A new definition of neuropathic pain. Pain 152:2204–2205Google Scholar
  73. Jezek P, Hlavatá L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37(12):2478–2503Google Scholar
  74. Ji RR, Berta T, Nedergaard M (2013) Glia and pain: Is chronic pain a gliopathy? Pain 154:S10–S28Google Scholar
  75. Ji RR, Nackley A, Huh Y, Terrando N, Maixner W (2018) Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 129(2):343–366Google Scholar
  76. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210Google Scholar
  77. Karout M, Miesch M, Geoffroy P, Kraft S, Hofmann HD, Mensah-Nyagan AG, Kirsch M (2016) Novel analogs of allopregnanolone show improved efficiency and specificity in neuroprotection and stimulation of proliferation. J Neurochem 139(5):782–794Google Scholar
  78. Kibaly C, Meyer L, Patte-Mensah C, Mensah-Nyagan AG (2008) Biochemical and functional evidence for the control of pain mechanisms by dehydroepiandrosterone endogenously synthesized in the spinal cord. FASEB J 22(1):93–104Google Scholar
  79. Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM (2004) Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 111(1–2):116–124Google Scholar
  80. Kim HY, Chung JM, Chung K (2008) Increased production of mitochondrial superoxide in the spinal cord induces pain behaviors in mice: the effect of mitochondrial electron transport complex inhibitors. Neurosci Lett 447(1):87–91Google Scholar
  81. Kim MJ, Shin HJ, Won KA, Yang KY, Ju JS, Park YY, Park JS, Bae YC, Ahn DK (2012) Progesterone produces antinociceptive and neuroprotective effects in rats with microinjected lysophosphatidic acid in the trigeminal nerve root. Mol Pain 8:16Google Scholar
  82. King SR, Stocco DM (2011) Steroidogenic acute regulatory protein expression in the central nervous system. Front Endocrinol (Lausanne) 2:72Google Scholar
  83. King SR, Manna PR, Ishii T, Syapin PJ, Ginsberg SD, Wilson K, Walsh LP, Parker KL, Stocco DM, Smith RG, Lamb DJ (2002) An essential component in steroid synthesis, the steroidogenic acute regulatory protein, is expressed in discrete regions of the brain. J Neurosci 22(24):10613–10620Google Scholar
  84. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9(7):505–518Google Scholar
  85. Labombarda F, Pianos A, Liere P, Eychenne B, González S, Cambourg A, De Nicola AF, Schumacher M, Guennoun R (2006) Injury elicited increase in spinal cord neurosteroid content analyzed by gas chromatography mass spectrometry. Endocrinology 147(4):1847–1859Google Scholar
  86. Labombarda F, Gonzalez SL, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF (2009) Effects of progesterone on oligodendrocyte progenitors, oligodendrocyte transcription factors and myelin proteins following spinal cord injury. Glia 57(8):884–897Google Scholar
  87. Labombarda F, Meffre D, Delespierre B, Krivokapic-Blondiaux S, Chastre A, Thomas P, Pang Y, Lydon JP, Gonzalez SL, De Nicola AF, Schumacher M, Guennoun R (2010) Membrane progesterone receptors localization in the mouse spinal cord. Neuroscience 166(1):94–106Google Scholar
  88. Labombarda F, González S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF (2011) Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp Neurol 231(1):135–146Google Scholar
  89. Labombarda F, Jure I, Gonzalez S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF (2015) A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord. J Steroid Biochem Mol Biol 154:274–284Google Scholar
  90. Lan JY, Skeberdis VA, Jover T, Grooms SY, Lin Y, Araneda RC, Zheng X, Bennet MVL, Zukin RS (2001) Protein kinase C modulates NMDA receptor traffiking and gating. Nat Neurosci 4(4):382–390Google Scholar
  91. Lavaque E, Sierra A, Azcoitia I, Garcia-Segura LM (2006) Steroidogenic acute regulatory protein in the brain. Neuroscience 138(3):741–747Google Scholar
  92. Lee I, Kim HK, Kim JH, Chung K, Chung JM (2007) The role of reactive oxygen species in capsaicin-induced mechanical hyperalgesia and in the activities of dorsal horn neurons. Pain 133:9–17Google Scholar
  93. Lee KY, Chung K, Chung JM (2010) Involvement of reactive oxygen species in long-term potentiation in the spinal cord dorsal horn. J Neurophysiol 103(1):382–391Google Scholar
  94. Lejri I, Grimm A, Miesch M, Geoffroy P, Eckert A, Mensah-Nyagan AG (2017) Allopregnanolone and its analog BR 297 rescue neuronal cells from oxidative stress-induced death through bioenergetic improvement. Biochim Biophys Acta 1863(3):631–642Google Scholar
  95. Leonelli E, Bianchi R, Cavaletti G, Caruso D, Crippa D, García-Segura LM, Lauria G, Roglio I, Melcangi RC (2007) Progesterone and its derivatives are neuroprotective agents in experimental diabetic neuropathy: a multimodal analysis. Neuroscience 144(4):1293–1304Google Scholar
  96. Lim G, Wang S, Zeng Q, Sung B, Yang L, Mao J (2005) Expression of spinal NMDA receptor and PKCgamma after chronic morphine is regulated by spinal glucocorticoid receptor. J Neurosci 25(48):11145–11154Google Scholar
  97. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795Google Scholar
  98. Little JW, Cuzzocrea S, Bryant L, Esposito E, Doyle T, Rausaria S, Neumann WL, Salvemini D (2013) Spinal mitochondrial-derived peroxynitrite enhances neuroimmune activation during morphine hyperalgesia and antinociceptive tolerance. Pain 154(7):978–986Google Scholar
  99. Liu X, Li W, Dai L, Zhang T, Xia W, Liu H, Ma K, Xu J, Jin Y (2014) Early repeated administration of progesterone improves the recovery of neuropathic pain and modulates spinal 18 kDa-translocator protein (TSPO) expression. J Steroid Biochem Mol Biol 143:130–140Google Scholar
  100. Lösel RM, Besong D, Peluso JJ, Wehling M (2008) Progesterone receptor membrane component 1–many tasks for a versatile protein. Steroids 73(9–10):929–934Google Scholar
  101. Martin WJ, Malmberg AB, Basbaum AI (2001) PKCgamma contributes to a subset of the NMDA-dependent spinal circuits that underlie injury-induced persistent pain. J Neurosci 21(14):5321–5327Google Scholar
  102. Matsui D, Sakari M, Sato T, Murayama A, Takada I, Kim M, Takeyama K, Kato S (2002) Transcriptional regulation of the mouse steroid 5alpha-reductase type II gene by progesterone in brain. Nucleic Acids Res 30(6):1387–1393Google Scholar
  103. Maurice T, Grégoire C, Espallergues J (2006) Neuro(active)steroids actions at the neuromodulatory sigma1 (sigma1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharmacol Biochem Behav 84(4):581–597Google Scholar
  104. McEwen BS, Kalia M (2010) The role of corticosteroids and stress in chronic pain conditions. Metabolism 59:9–15Google Scholar
  105. Meffre D, Delespierre B, Gouézou M, Leclerc P, Vinson GP, Schumacher M, Stein DG, Guennoun R (2005) The membrane-associated progesterone-binding protein 25-Dx is expressed in brain regions involved in water homeostasis and is up-regulated after traumatic brain injury. J Neurochem 93(5):1314–1326Google Scholar
  106. Meffre D, Labombarda F, Delespierre B, Chastre A, De Nicola AF, Stein DG, Schumacher M, Guennoun R (2013) Distribution of membrane progesterone receptor alpha in the male mouse and rat brain and its regulation after traumatic brain injury. Neuroscience 231:111–124Google Scholar
  107. Melcangi RC, Giatti S, Calabrese D, Pesaresi M, Cermenati G, Mitro N, Viviani B, Garcia-Segura LM, Caruso D (2014) Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol 113:56–69Google Scholar
  108. Mensah-Nyagan AG, Do-Rego JL, Feuilloley M, Marcual A, Lange C, Pelletier G, Vaudry H (1996a) In vivo and in vitro evidence for the biosynthesis of testosterone in the telencephalon of the female frog. J Neurochem 67(1):413–422Google Scholar
  109. Mensah-Nyagan AM, Feuilloley M, Do-Rego JL, Marcual A, Lange C, Tonon MC, Pelletier G, Vaudry H (1996b) Localization of 17beta-hydroxysteroid dehydrogenase and characterization of testosterone in the brain of the male frog. Proc Natl Acad Sci USA 93(4):1423–1428Google Scholar
  110. Mensah-Nyagan AG, Do-Rego JL, Beaujean D, Luu-The V, Pelletier G, Vaudry H (1999) Neurosteroids: expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol Rev 51(1):63–81Google Scholar
  111. Mensah-Nyagan AG, Kibaly C, Schaeffer V, Venard C, Meyer L, Patte-Mensah C (2008) Endogenous steroid production in the spinal cord and potential involvement in neuropathic pain modulation. J Steroid Biochem Mol Biol 109(3–5):286–293Google Scholar
  112. Mensah-Nyagan AG, Meyer L, Schaeffer V, Kibaly C, Patte-Mensah C (2009) Evidence for a key role of steroids in the modulation of pain. Psychoneuroendocrinology 34(S1):169–177Google Scholar
  113. Mensah-Nyagan AG, Patte-Mensah C, Meyer L, Taleb O, Miesch M, Geoffroy P, Bressault B (2012) Derivatives of Allopregnanolone and of Epiallopregnanolone and, their preparation and their uses for treating a neuropathological condition. International publication number: WO 2012/127176 A1Google Scholar
  114. Meyer L, Venard C, Schaeffer V, Patte-Mensah C, Mensah-Nyagan AG (2008) The biological activity of 3alpha-hydroxysteroid oxido-reductase in the spinal cord regulates thermal and mechanical pain thresholds after sciatic nerve injury. Neurobiol Dis 30(1):30–41Google Scholar
  115. Meyer L, Patte-Mensah C, Taleb O, Mensah-Nyagan AG (2010) Cellular and functional evidence for a protective action of neurosteroids against vincristine chemotherapy-induced painful neuropathy. Cell Mol Life Sci 67(17):3017–3034Google Scholar
  116. Meyer L, Patte-Mensah C, Taleb O, Mensah-Nyagan AG (2011) Allopregnanolone prevents and suppresses oxaliplatin-evoked painful neuropathy: multi-parametric assessment and direct evidence. Pain 152(1):170–181Google Scholar
  117. Mietto BS, Mostacada K, Martinez AM (2015) Neurotrauma and inflammation: CNS and PNS responses. Mediators Inflamm.  https://doi.org/10.1155/2015/251204 Google Scholar
  118. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474Google Scholar
  119. Mitchell EA, Gentet LJ, Dempster J, Belelli D (2007) GABAA and glycine receptor-mediated transmission in rat lamina II neurones: relevance to the analgesic actions of neuroactive steroids. J Physiol 583:1021–1040Google Scholar
  120. Moradi-Azani M, Ahmadiani A, Amini H (2011) Increase in formalin-induced tonic pain by 5alpha-reductase and aromatase inhibition in female rats. Pharmacol Biochem Behav 98(1):62–66Google Scholar
  121. Muscoli C, Cuzzocrea S, Ndengele MM, Mollace V, Porreca F, Fabrizi F, Esposito E, Masini E, Matuschak GM, Salvemini D (2007) Therapeutic manipulationof peroxynitrite attenuates the development of opiate-inducedantinociceptive tolerance in mice. J Clin Investig 117:3530–3539Google Scholar
  122. Nadeson R, Goodchild CS (2000) Antinociceptive properties of neurosteroids II. Experiments with Saffan and its components alphoxolone and alphadolone to reveal separation of anaesthetic and antinociceptive effects and the involvement of spinal GABAa receptors. Pain 88:31–39Google Scholar
  123. Nilsen J, Diaz Brinton R (2003) Mechanism of estrogen-mediated neuroprotection: regulation of mitochondrial calcium and Bcl-2 expression. Proc Natl Acad Sci USA 100(5):2842–2847Google Scholar
  124. O’Malley BW, Tsai SY, Bagchi M, Weigel NL, Schrader WT, Tsai MJ (1991) Molecular mechanism of action of a steroid hormone receptor. Recent Prog Horm Res 47:1–24Google Scholar
  125. Panzica GC, Melcangi RC (2008) The endocrine nervous system: source and target for neuroactive steroids. Brain Res Rev 57(2):271–276Google Scholar
  126. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27(8):402–409Google Scholar
  127. Park ES, Gao X, Chung JM, Chung K (2006) Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons. Neurosci Lett 391(3):108–111Google Scholar
  128. Pathirathna S, Todorovic SM, Covey DF, Jevtovic-Todorovic V (2005a) 5alpha-reduced neuroactive steroids alleviate thermal and mechanical hyperalgesia in rats with neuropathic pain. Pain 117(3):326–339Google Scholar
  129. Pathirathna S, Brimelow BC, Jagodic MM, Krishnan K, Jiang X, Zorumski CF, Mennerick S, Covey DF, Todorovic SM, Jevtovic-Todorovic V (2005b) New evidence that both T-type calcium channels and GABAA channels are responsible for the potent peripheral analgesic effects of 5alpha-reduced neuroactive steroids. Pain 114(3):429–443Google Scholar
  130. Patte-Mensah C, Kappes V, Freund-Mercier MJ, Tsutsui K, Mensah-Nyagan AG (2003) Cellular distribution and bioactivity of the key steroidogenic enzyme, cytochrome P450 side chain cleavage, in sensory neural pathways. J Neurochem 86:1233–1246Google Scholar
  131. Patte-Mensah C, Li S, Mensah-Nyagan AG (2004a) Impact of neuropathic pain on the gene expression and activity of cytochrome P450side-chain-cleavage in sensory neural networks. Cell Mol Life Sci 61(17):2274–2284Google Scholar
  132. Patte-Mensah C, Penning TM, Mensah-Nyagan AG (2004b) Anatomical and cellular localization of neuroactive 5 alpha/3 alpha-reduced steroid-synthesizing enzymes in the spinal cord. J Comp Neurol 477:286–299Google Scholar
  133. Patte-Mensah C, Kibaly C, Mensah-Nyagan AG (2005) Substance P inhibits progesterone conversion to neuroactive metabolites in spinal sensory circuit: a potential component of nociception. PNAS 102(25):9044–9049Google Scholar
  134. Patte-Mensah C, Kibaly C, Boudard D, Schaeffer V, Baglan A, Saredi S, Meyer L, Mensah-Nyagan AG (2006) Neurogenic pain and steroid sintesis in the spinal cord. J Mol Neurosci 28(1):17–31Google Scholar
  135. Patte-Mensah C, Meyer L, Schaeffer V, Mensah-Nyagan AG (2010) Selective regulation of 3 alpha-hydroxysteroid oxido-reductase expression in dorsal root ganglion neurons: a possible mechanism to cope with peripheral nerve injury-induced chronic pain. Pain 150(3):522–534Google Scholar
  136. Patte-Mensah C, Meyer L, Taleb O, Mensah-Nyagan AG (2013) Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain. Prog Neurobiol 113:70–78Google Scholar
  137. Patte-Mensah C, Meyer L, Taleb O, Mensah-Nyagan AG (2014) Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain. Prog Neurobiol 113:70–78Google Scholar
  138. Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6:2311–2322Google Scholar
  139. Peng HY, Chen GD, Lee SD, Lai CY, Chiu CH, Cheng CL, Chang YS, Hsieh MC, Tung KC, Lin TB (2009) Neuroactive steroids inhibit spinal reflex potentiation by selectively enhancing specific spinal GABA(A) receptor subtypes. Pain 143(1–2):12–20Google Scholar
  140. Pesaresi M, Maschi O, Giatti S, Garcia-Segura LM, Caruso D, Melcangi RC (2010) Sex differences in neuroactive steroid levels in the nervous system of diabetic and non-diabetic rats. Horm Behav 57(1):46–55Google Scholar
  141. Pesaresi M, Giatti S, Spezzano R, Romano S, Diviccaro S, Borsello T, Mitro N, Caruso D, Garcia-Segura LM, Melcangi RC (2018) Axonal transport in a peripheral diabetic neuropathy model: sex-dimorphic features. Biol Sex Differ 9(1):6Google Scholar
  142. Poisbeau P, Patte-Mensah C, Keller AF, Barrot M, Breton JD, Luis-Delgado OE, Freund-Mercier MJ, Mensah-Nyagan AG, Schlichter R (2005) Inflammatory pain upregulates spinal inhibition via endogenous neurosterois production. J Neurosci 25(50):11768–11776Google Scholar
  143. Porcu P, Barron AM, Frye CA, Walf AA, Yang SY, He XY, Morrow AL, Panzica GC, Melcangi RC (2016) Neurosteroidogenesis today: novel targets for neuroactive steroid synthesis and action and their relevance for translational research. J Neuroendocrinol 28(2):12351Google Scholar
  144. Reddy DS (2010) Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res 186:113–137Google Scholar
  145. Ren K, Dubne R, Murphy A, Hoffman GE (2000) Progesterone attenuates persistent inflammatory hyperalgesia in females rats: involvement of spinal NMDA receptor mechanism. Brain Res 865:272–277Google Scholar
  146. Rettberg JR, Yao J, Brinton RD (2014) Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol 35(1):8–30Google Scholar
  147. Robel P, Baulieu E (1995) Neurosteroids: biosynthesis and function. Crit Rev Neurobiol 9(4):383–394Google Scholar
  148. Roglio I, Bianchi R, Gotti S, Scurati S, Giatti S, Pesaresi M, Caruso D, Panzica GC, Melcangi RC (2008a) Neuroprotective effects of dihydroprogesterone and progesterone in an experimental model of nerve crush injury. Neuroscience 155(3):673–685Google Scholar
  149. Roglio I, Giatti S, Pesaresi M, Bianchi R, Cavaletti G, Lauria G, Garcia-Segura LM, Melcangi RC (2008b) Neuroactive steroids and peripheral neuropathy. Brain Res Rev 57(2):460–469Google Scholar
  150. Roglio I, Bianchi R, Camozzi F, Carozzi V, Cervellini I, Crippa D, Lauria G, Cavaletti G, Melcangi RC (2009) Docetaxel-induced peripheral neuropathy: protective effects of dihydroprogesterone and progesterone in an experimental model. J Peripher Nerv Syst 14(1):36–44Google Scholar
  151. Rudolph LM, Cornil CA, Mittelman-Smith MA, Rainville JR, Remage-Healey L, Sinchak K, Micevych PE (2016) Actions of steroids: new neurotransmitters. J Neurosci 36(45):11449–11458Google Scholar
  152. Salvemini D, Neumann WL (2009) Peroxynitrite: a strategic linchpin of opioidanalgesic tolerance. Trends Pharmacol Sci 30:194–202Google Scholar
  153. Saredi S, Patte-Mensah C, Melcangi RC, Mensah-Nyagan AG (2005) Effect of streptozotocin-induced diabetes on the gene expression and biological activity of 3beta-hydroxysteroid dehydrogenase in the rat spinal cord. Neuroscience 135(3):869–877Google Scholar
  154. Sayeed I, Parvez S, Wali B, Siemen D, Stein DG (2009) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone. Brain Res 1263:165–173Google Scholar
  155. Schaeffer V, Meyer L, Patte-Mensah C, Mensah-Nyagan AG (2010a) Progress in dorsal root ganglion neurosteroidogenic activity: basic evidence and pathophysiological correlation. Prog Neurobiol 92(1):33–41Google Scholar
  156. Schaeffer V, Meyer L, Patte-Mensah C, Eckert A, Mensah-Nyagan AG (2010b) Sciatic nerve injury induces apoptosis of dorsal root ganglion satellite glial cells and selectively modifies neurosteroidogenesis in sensory neurons. Glia 58(2):169–180Google Scholar
  157. Scheffler IE (2001) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1:3–31Google Scholar
  158. Schumacher M, Sitruk-Ware R, De Nicola AF (2008) Progesterone and progestins: neuroprotection and myelin repair. Curr Opin Pharmacol 8(6):740–746Google Scholar
  159. Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM (2012) Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 6:10Google Scholar
  160. Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R (2014) Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 113:6–39Google Scholar
  161. Schwartz ES, Lee I, Chung K, Chung JM (2008) Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain 138(3):514–525Google Scholar
  162. Stein DG (2006) Progesterone in the experimental treatment of central and peripheral nervous system injuries. Future Neurol 1(4):429–438Google Scholar
  163. Stoffel-Wagner B (2003) Neurosteroid biosynthesis in the human brain and its clinical implications. Ann NY Acad Sci 1007:64–78Google Scholar
  164. Sui BD, Xu TQ, Liu JW, Wei W, Zheng CX, Guo BL, Wang YY, Yang YL (2013) Understanding the role of mitochondria in the pathogenesis of chronic pain. Postgrad Med J 89(1058):709–714Google Scholar
  165. Taleb O, Bouzobra F, Tekin-Pala H, Meyer L, Mensah-Nyagan AG, Patte-Mensah C (2017) Behavioral and electromyographic assessment of oxaliplatin-induced motor dysfunctions: evidence for a therapeutic effect of allopregnanolone. Behav Brain Res 320:440–449Google Scholar
  166. Taleb O, Patte-Mensah C, Meyer L, Kemmel V, Geoffroy P, Miesch M, Mensah-Nyagan AG (2018) Evidence for effective structure-based neuromodulatory effects of new analogues of neurosteroid allopregnanolone. J Neuroendocrinol 30(2):e12568Google Scholar
  167. Thomas P (2008) Characteristics of membrane progestin receptor alpha (mPRalpha) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions. Front Neuroendocrinol 29(2):292–312Google Scholar
  168. Thomas P, Pang Y (2012) Membrane progesterone receptors: evidence for neuroprotective, neurosteroid signaling and neuroendocrine functions in neuronal cells. Neuroendocrinology 96(2):162–171Google Scholar
  169. Thomas AJ, Nockels RP, Pan HQ, Shaffrey CI, Chopp M (1999) Progesterone is neuroprotective after experimental acute spinal cord trauma in rats. Spine 24:2134–2138Google Scholar
  170. Thomas P, Pang Y, Dong J (2014) Enhancement of cell surface expression and receptor functions of membrane progestin receptor α (mPRα) by progesterone receptor membrane component 1 (PGRMC1): evidence for a role of PGRMC1 as an adaptor protein for steroid receptors. Endocrinology 155(3):1107–1119Google Scholar
  171. Tomiyama M, Furusawa K, Kamijo M, Kimura T, Matsunaga M, Baba M (2005) Upregulation of mRNAs coding for AMPA and NMDA receptor subunits and metabotropic glutamate receptors in the dorsal horn of the spinal cord in a rat model of diabetes mellitus. Brain Res Mol Brain Res 136(1–2):275–281Google Scholar
  172. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J (2008) Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 70(18):1630–1635Google Scholar
  173. Truini A, Cruccu G (2006) Pathophysiological mechanisms of neuropathic pain. Neurol Sci 27:179–182Google Scholar
  174. Tsuda M (2017) P2 receptors, microglial cytokines and chemokines, and neuropathic pain. J Neurosci Res 95(6):1319–1329Google Scholar
  175. Tsuda M (2018) Modulation of Pain and Itch by Spinal Glia. Neurosci Bull 34(1):178–185Google Scholar
  176. Tsuda M, Masuda T, Tozaki-Saitoh H, Inoue K (2013) Microglial regulation of neuropathic pain. J Pharmacol Sci 121(2):89–94Google Scholar
  177. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344Google Scholar
  178. Ultenius C, Linderoth B, Meyerson BA, Wallin J (2006) Spinal NMDA receptor phosphorylation correlates with the presence of neuropathic signs following peripheral nerve injury in the rat. Neurosci Lett 399(1–2):85–90Google Scholar
  179. Valera S, Ballivet M, Bertrand D (1992) Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 89:9949–9953Google Scholar
  180. Veiga S, Leonelli E, Beelke M, Garcia-Segura LM, Melcangi RC (2006) Neuroactive steroids prevent peripheral myelin alterations induced by diabetes. Neurosci Lett 10(402):1–2Google Scholar
  181. Velasco R, Bruna J (2010) Chemotherapy-induced peripheral neuropathy: an unresolved issue. Neurologia 25(2):116–131Google Scholar
  182. Viviani B, Boraso M, Marchetti N, Marinovich M (2014) Perspectives on neuroinflammation and excitotoxicity: a neurotoxic conspiracy? Neurotoxicology 43:10–20Google Scholar
  183. Walters ET (2014) Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense. Exp Neurol 258:48–61Google Scholar
  184. Wei XH, Wei X, Chen FY, Zang Y, Xin WJ, Pang RP, Chen Y, Wang J, Li YY, Shen KF, Zhou LJ, Liu XG (2013) The upregulation of translocator protein (18 kDa) promotes recovery from neuropathic pain in rats. J Neurosci 33(4):1540–1551Google Scholar
  185. Woolf CJ, Ma Q (2007) Nociceptors—noxious stimulus detectors. Neuron 55:353–364Google Scholar
  186. Xiao WH, Bennett GJ (2012) Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 153(3):704–709Google Scholar
  187. Ye L, Xiao L, Bai X, Yang SY, Li Y, Chen Y, Cui Y, Chen Y (2016) Spinal mitochondrial-derived ROS contributes to remifentanil-induced postoperative hyperalgesia via modulating NMDA receptor in rats. Neurosci Lett 634:79–86Google Scholar
  188. Zampieri S, Mellon SH, Butters TD, Nevyjel M, Covey DF, Bembi B, Dardis A (2009) Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone. J Cell Mol Med 13(9B):3786–3796Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Bioquímica Humana, Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina ExperimentalCONICETBuenos AiresArgentina
  3. 3.Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance

Personalised recommendations