Advertisement

Non-reproductive Functions of Aromatase in the Central Nervous System Under Physiological and Pathological Conditions

  • Maria Elvira Brocca
  • Luis Miguel Garcia-Segura
Review Paper
  • 57 Downloads

Abstract

The modulation of brain function and behavior by steroid hormones was classically associated with their secretion by peripheral endocrine glands. The discovery that the brain expresses the enzyme aromatase, which produces estradiol from testosterone, expanded this traditional concept. One of the best-studied roles of brain estradiol synthesis is the control of reproductive behavior. In addition, there is increasing evidence that estradiol from neural origin is also involved in a variety of non-reproductive functions. These include the regulation of neurogenesis, neuronal development, synaptic transmission, and plasticity in brain regions not directly related with the control of reproduction. Central aromatase is also involved in the modulation of cognition, mood, and non-reproductive behaviors. Furthermore, under pathological conditions aromatase is upregulated in the central nervous system. This upregulation represents a neuroprotective and likely also a reparative response by increasing local estradiol levels in order to maintain the homeostasis of the neural tissue. In this paper, we review the non-reproductive functions of neural aromatase and neural-derived estradiol under physiological and pathological conditions. We also consider the existence of sex differences in the role of the enzyme in both contexts.

Keywords

Astrocytes Neuroinflammation Neuroprotection Radial glia Sex differences Synapses 

Notes

Acknowledgements

Authors acknowledge support from Agencia Estatal de Investigación, Spain (BFU2017-82754-R), Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain, and Fondos FEDER. MEB was supported by an International Brain Research Organization (IBRO) research fellowship.

Compliance with Ethical Standards

Conflict of interest

The authors report no conflict of interest.

References

  1. Abdelgadir SE, Roselli CE, Choate JV, Resko JA (1997) Distribution of aromatase cytochrome P450 messenger ribonucleic acid in adult rhesus monkey brains. Biol Reprod 57:772–777PubMedCrossRefGoogle Scholar
  2. Alward BA, de Bournonville C, Chan TT et al (2016) Aromatase inhibition rapidly affects in a reversible manner distinct features of birdsong. Sci Rep 6:32344.  https://doi.org/10.1038/srep32344 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arevalo MA, Azcoitia I, Garcia-Segura LM (2015) The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 16:17–29.  https://doi.org/10.1038/nrn3856 PubMedCrossRefGoogle Scholar
  4. Azcoitia I, Sierra A, Veiga S et al (2001) Brain aromatase is neuroprotective. J Neurobiol 47(4):318–329.  https://doi.org/10.1002/neu.1038 PubMedCrossRefGoogle Scholar
  5. Azcoitia I, Sierra A, Veiga S, Garcia-Segura LM (2003) Aromatase expression by reactive astroglia is neuroprotective. Ann N Y Acad Sci 1007:298–305PubMedCrossRefGoogle Scholar
  6. Azcoitia I, Yague JG, Garcia-Segura LM (2011) Estradiol synthesis within the human brain. Neuroscience 191:139–147.  https://doi.org/10.1016/j.neuroscience.2011.02.012 PubMedCrossRefGoogle Scholar
  7. Azcoitia I, Arevalo MA, Garcia-Segura LM (2018) Neural-derived estradiol regulates brain plasticity. J Chem Neuroanat 89:53–59.  https://doi.org/10.1016/j.jchemneu.2017.04.004 PubMedCrossRefGoogle Scholar
  8. Bailey DJ, Ma C, Soma KK, Saldanha CJ (2013) Inhibition of hippocampal aromatization impairs spatial memory performance in a male songbird. Endocrinology 154:4707–4714.  https://doi.org/10.1210/en.2013-1684 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bailey DJ, Makeyeva YV, Paitel ER et al (2017) Hippocampal aromatization modulates spatial memory and characteristics of the synaptic membrane in the male zebra finch. Endocrinology 158:852–859.  https://doi.org/10.1210/en.2016-1692 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Balthazart J, Ball GF (2006) Is brain estradiol a hormone or a neurotransmitter? Trends Neurosci 29:241–249.  https://doi.org/10.1016/j.tins.2006.03.004 PubMedCrossRefGoogle Scholar
  11. Balthazart J, Foidart A, Harada N (1990) Immunocytochemical localization of aromatase in the brain. Brain Res 514:327–333PubMedCrossRefGoogle Scholar
  12. Balthazart J, Foidart A, Surlemont C, Harada N (1991) Distribution of aromatase-immunoreactive cells in the mouse forebrain. Cell Tissue Res 263:71–79PubMedCrossRefGoogle Scholar
  13. Balthazart J, Baillien M, Ball GF (2002) Interactions between aromatase (estrogen synthase) and dopamine in the control of male sexual behavior in quail. Comp Biochem Physiol B Biochem Mol Biol 132:37–55PubMedCrossRefGoogle Scholar
  14. Balthazart J, Baillien M, Charlier TD et al (2003) The neuroendocrinology of reproductive behavior in Japanese quail. Domest Anim Endocrinol 25:69–82PubMedCrossRefGoogle Scholar
  15. Barakat R, Oakley O, Kim H et al (2016) Extra-gonadal sites of estrogen biosynthesis and function. BMB Rep 49:488–496.  https://doi.org/10.5483/BMBRep.2016.49.9.141 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bayer J, Rune G, Schultz H et al (2015) The effect of estrogen synthesis inhibition on hippocampal memory. Psychoneuroendocrinology 56:213–225.  https://doi.org/10.1016/j.psyneuen.2015.03.011 PubMedCrossRefGoogle Scholar
  17. Bender RA, Zhou L, Vierk R et al (2017) Sex-dependent regulation of aromatase-mediated synaptic plasticity in the basolateral amygdala. J Neurosci 37:1532–1545.  https://doi.org/10.1523/JNEUROSCI.1532-16.2016 PubMedCrossRefGoogle Scholar
  18. Beyer C (1999) Estrogen and the developing mammalian brain. Anat Embryol (Berl) 199:379–390CrossRefGoogle Scholar
  19. Bian C, Zhu K, Guo Q et al (2012) Sex differences and synchronous development of steroid receptor coactivator-1 and synaptic proteins in the hippocampus of postnatal female and male C57BL/6 mice. Steroids 77:149–156.  https://doi.org/10.1016/j.steroids.2011.11.002 PubMedCrossRefGoogle Scholar
  20. Biegon A (2016) In vivo visualization of aromatase in animals and humans. Front Neuroendocrinol 40:42–51.  https://doi.org/10.1016/j.yfrne.2015.10.001 PubMedCrossRefGoogle Scholar
  21. Biegon A, Kim SW, Alexoff DL et al (2010) Unique distribution of aromatase in the human brain: in vivo studies with PET and [N-methyl-11C]vorozole. Synapse 64:801–807.  https://doi.org/10.1002/syn.20791 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Borbélyová V, Domonkos E, Csongová M et al (2017) Sex-dependent effects of letrozole on anxiety in middle-aged rats. Clin Exp Pharmacol Physiol 44(Suppl 1):93–98.  https://doi.org/10.1111/1440-1681.12731 PubMedCrossRefGoogle Scholar
  23. Bowers JM, Waddell J, McCarthy MM (2010) A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol Sex Differ 1:8.  https://doi.org/10.1186/2042-6410-1-8 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Brandt N, Vierk R, Rune GM (2013) Sexual dimorphism in estrogen-induced synaptogenesis in the adult hippocampus. Int J Dev Biol 57:351–356.  https://doi.org/10.1387/ijdb.120217gr PubMedCrossRefGoogle Scholar
  25. Burul-Bozkurt N, Pekiner C, Kelicen P (2010) Diabetes alters aromatase enzyme levels in sciatic nerve and hippocampus tissues of rats. Cell Mol Neurobiol 30:445–451.  https://doi.org/10.1007/s10571-009-9469-0 PubMedCrossRefGoogle Scholar
  26. Cambiasso MJ, Cisternas CD, Ruiz-Palmero I et al (2017) Interaction of sex chromosome complement, gonadal hormones and neuronal steroid synthesis on the sexual differentiation of mammalian neurons. J Neurogenet 31:300–306.  https://doi.org/10.1080/01677063.2017.1390572 PubMedCrossRefGoogle Scholar
  27. Carrier N, Saland SK, Duclot F et al (2015) The anxiolytic and antidepressant-like effects of testosterone and estrogen in gonadectomized male rats. Biol Psychiatry 78:259–269.  https://doi.org/10.1016/j.biopsych.2014.12.024 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Carswell HV, Dominiczak AF, Garcia-Segura LM et al (2005) Brain aromatase expression after experimental stroke: topography and time course. J Steroid Biochem Mol Biol 96:89–91.  https://doi.org/10.1016/j.jsbmb.2005.02.016 PubMedCrossRefGoogle Scholar
  29. Chamniansawat S, Chongthammakun S (2012) A priming role of local estrogen on exogenous estrogen-mediated synaptic plasticity and neuroprotection. Exp Mol Med 44:403–411.  https://doi.org/10.3858/emm.2012.44.6.046 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cisternas CD, Tome K, Caeiro XE et al (2015) Sex chromosome complement determines sex differences in aromatase expression and regulation in the stria terminalis and anterior amygdala of the developing mouse brain. Mol Cell Endocrinol 414:99–110.  https://doi.org/10.1016/j.mce.2015.07.027 PubMedCrossRefGoogle Scholar
  31. Coumailleau P, Kah O (2014) Cyp19a1 (aromatase) expression in the Xenopus brain at different developmental stages. J Neuroendocrinol 26:226–236.  https://doi.org/10.1111/jne.12142 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Coumailleau P, Pellegrini E, Adrio F et al (2015) Aromatase, estrogen receptors and brain development in fish and amphibians. Biochim Biophys Acta 1849:152–162.  https://doi.org/10.1016/j.bbagrm.2014.07.002 PubMedCrossRefGoogle Scholar
  33. Dalla C, Antoniou K, Papadopoulou-Daifoti Z et al (2004) Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology. Eur J Neurosci 20:217–228.  https://doi.org/10.1111/j.1460-9568.2004.03443.x PubMedCrossRefGoogle Scholar
  34. Dalla C, Antoniou K, Papadopoulou-Daifoti Z et al (2005) Male aromatase-knockout mice exhibit normal levels of activity, anxiety and “depressive-like” symptomatology. Behav Brain Res 163:186–193.  https://doi.org/10.1016/j.bbr.2005.04.020 PubMedCrossRefGoogle Scholar
  35. de Bournonville C, Smolders I, Van Eeckhaut A et al (2017) Glutamate released in the preoptic area during sexual behavior controls local estrogen synthesis in male quail. Psychoneuroendocrinology 79:49–58.  https://doi.org/10.1016/j.psyneuen.2017.02.002 PubMedPubMedCentralCrossRefGoogle Scholar
  36. De Groof G, Balthazart J, Cornil CA, Van der Linden A (2017) Topography and lateralized effect of acute aromatase inhibition on auditory processing in a seasonal songbird. J Neurosci 37:4243–4254.  https://doi.org/10.1523/JNEUROSCI.1961-16.2017 PubMedCrossRefGoogle Scholar
  37. Di Mauro M, Tozzi A, Calabresi P et al (2017) Different synaptic stimulation patterns influence the local androgenic and estrogenic neurosteroid availability triggering hippocampal synaptic plasticity in the male rat. Eur J Neurosci 45:499–509.  https://doi.org/10.1111/ejn.13455 PubMedCrossRefGoogle Scholar
  38. Dieni CV, Ferraresi A, Sullivan JA et al (2018) Acute inhibition of estradiol synthesis impacts vestibulo-ocular reflex adaptation and cerebellar long-term potentiation in male rats. Brain Struct Funct 223:837–850.  https://doi.org/10.1007/s00429-017-1514-z PubMedCrossRefGoogle Scholar
  39. Diotel N, Le Page Y, Mouriec K et al (2010) Aromatase in the brain of teleost fish: expression, regulation and putative functions. Front Neuroendocrinol 31:172–192.  https://doi.org/10.1016/j.yfrne.2010.01.003 PubMedCrossRefGoogle Scholar
  40. Duncan KA, Saldanha CJ (2011) Neuroinflammation induces glial aromatase expression in the uninjured songbird brain. J Neuroinflammation 8:81.  https://doi.org/10.1186/1742-2094-8-81 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Evrard HC, Harada N, Balthazart J (2004) Immunocytochemical localization of aromatase in sensory and integrating nuclei of the hindbrain in Japanese quail (Coturnix japonica). J Comp Neurol 473:194–212.  https://doi.org/10.1002/cne.20068 PubMedCrossRefGoogle Scholar
  42. Fester L, Rune GM (2015) Sexual neurosteroids and synaptic plasticity in the hippocampus. Brain Res 1621:162–169.  https://doi.org/10.1016/j.brainres.2014.10.033 PubMedCrossRefGoogle Scholar
  43. Fester L, Ribeiro-Gouveia V, Prange-Kiel J et al (2006) Proliferation and apoptosis of hippocampal granule cells require local oestrogen synthesis. J Neurochem 97:1136–1144.  https://doi.org/10.1111/j.1471-4159.2006.03809.x PubMedCrossRefGoogle Scholar
  44. Fester L, Zhou L, Ossig C et al (2017) Synaptopodin is regulated by aromatase activity. J Neurochem 140:126–139.  https://doi.org/10.1111/jnc.13889 PubMedCrossRefGoogle Scholar
  45. Foidart A, Balthazart J (1995) Sexual differentiation of brain and behavior in quail and zebra finches: studies with a new aromatase inhibitor, R76713. J Steroid Biochem Mol Biol 53:267–275PubMedCrossRefGoogle Scholar
  46. Forlano PM, Deitcher DL, Myers DA, Bass AH (2001) Anatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish: aromatase enzyme and mRNA expression identify glia as source. J Neurosci 21:8943–8955.  https://doi.org/10.1523/JNEUROSCI.21-22-08943.2001 PubMedCrossRefGoogle Scholar
  47. Frick KM, Tuscher JJ, Koss WA et al (2018) Estrogenic regulation of memory consolidation: A look beyond the hippocampus, ovaries, and females. Physiol Behav 187:57–66.  https://doi.org/10.1016/j.physbeh.2017.07.028 PubMedCrossRefGoogle Scholar
  48. Gao P, Ding X-W, Dong L et al (2017) Expression of aromatase in the rostral ventromedial medulla and its role in the regulation of visceral pain. CNS Neurosci Ther 23:980–989.  https://doi.org/10.1111/cns.12769 PubMedCrossRefGoogle Scholar
  49. Garcia-Segura LM (2008) Aromatase in the brain: not just for reproduction anymore. J Neuroendocrinol 20:705–712.  https://doi.org/10.1111/j.1365-2826.2008.01713.x PubMedCrossRefGoogle Scholar
  50. Garcia-Segura LM, Wozniak A, Azcoitia I et al (1999) Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair. Neuroscience 89:567–578PubMedCrossRefGoogle Scholar
  51. Garcia-Segura LM, Veiga S, Sierra A et al (2003) Aromatase: a neuroprotective enzyme. Prog Neurobiol 71(1):31–41.  https://doi.org/10.1016/j.pneurobio.2003.09.005 PubMedCrossRefGoogle Scholar
  52. Gelinas D, Callard GV (1997) Immunolocalization of aromatase- and androgen receptor-positive neurons in the goldfish brain. Gen Comp Endocrinol 106:155–168.  https://doi.org/10.1006/gcen.1997.6891 PubMedCrossRefGoogle Scholar
  53. Ghorbanpoor S, Garcia-Segura LM, Haeri-Rohani A et al (2014) Aromatase inhibition exacerbates pain and reactive gliosis in the dorsal horn of the spinal cord of female rats caused by spinothalamic tract injury. Endocrinology 155:4341–4355.  https://doi.org/10.1210/en.2014-1158 PubMedCrossRefGoogle Scholar
  54. Graham BM, Milad MR (2014) Inhibition of estradiol synthesis impairs fear extinction in male rats. Learn Mem 21(7):347–350.  https://doi.org/10.1101/lm.034926.114 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Grassi S, Frondaroli A, Dieni C et al (2009) Long-term potentiation in the rat medial vestibular nuclei depends on locally synthesized 17beta-estradiol. J Neurosci 29:10779–10783.  https://doi.org/10.1523/JNEUROSCI.1697-09.2009 PubMedCrossRefGoogle Scholar
  56. Grassi S, Tozzi A, Costa C et al (2011) Neural 17β-estradiol facilitates long-term potentiation in the hippocampal CA1 region. Neuroscience 192:67–73.  https://doi.org/10.1016/j.neuroscience.2011.06.078 PubMedCrossRefGoogle Scholar
  57. Hajszan T, MacLusky NJ, Leranth C (2004) Dehydroepiandrosterone increases hippocampal spine synapse density in ovariectomized female rats. Endocrinology 145:1042–1045.  https://doi.org/10.1210/en.2003-1252 PubMedCrossRefGoogle Scholar
  58. Hedges VL, Chen G, Yu L et al (2018) Local estrogen synthesis regulates parallel fiber-Purkinje cell neurotransmission within the cerebellar cortex. Endocrinology 159:1328–1338.  https://doi.org/10.1210/en.2018-00039 PubMedCrossRefGoogle Scholar
  59. Hill RA, Pompolo S, Jones MEE et al (2004) Estrogen deficiency leads to apoptosis in dopaminergic neurons in the medial preoptic area and arcuate nucleus of male mice. Mol Cell Neurosci 27:466–476.  https://doi.org/10.1016/j.mcn.2004.04.012 PubMedCrossRefGoogle Scholar
  60. Hill RA, McInnes KJ, Gong ECH et al (2007) Estrogen deficient male mice develop compulsive behavior. Biol Psychiatry 61:359–366.  https://doi.org/10.1016/j.biopsych.2006.01.012 PubMedCrossRefGoogle Scholar
  61. Hill RA, Chua HK, Jones MEE et al (2009) Estrogen deficiency results in apoptosis in the frontal cortex of adult female aromatase knockout mice. Mol Cell Neurosci 41:1–7.  https://doi.org/10.1016/j.mcn.2008.12.009 PubMedCrossRefGoogle Scholar
  62. Hoffman JF, Wright CL, McCarthy MM (2016) A critical period in Purkinje cell development is mediated by local estradiol synthesis, disrupted by inflammation, and has enduring consequences only for males. J Neurosci 36:10039–10049.  https://doi.org/10.1523/JNEUROSCI.1262-16.2016 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hojo Y, Hattori T-A, Enami T et al (2004) Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. Proc Natl Acad Sci U S A 101:865–870.  https://doi.org/10.1073/pnas.2630225100 PubMedCrossRefGoogle Scholar
  64. Hojo Y, Higo S, Ishii H et al (2009) Comparison between hippocampus-synthesized and circulation-derived sex steroids in the hippocampus. Endocrinology 150:5106–5112.  https://doi.org/10.1210/en.2009-0305 PubMedCrossRefGoogle Scholar
  65. Hutchison JB (1997) Gender-specific steroid metabolism in neural differentiation. Cell Mol Neurobiol 17:603–626PubMedCrossRefGoogle Scholar
  66. Ikeda MZ, Krentzel AA, Oliver TJ et al (2017) Clustered organization and region-specific identities of estrogen-producing neurons in the forebrain of Zebra Finches (Taeniopygia guttata). J Comp Neurol 525:3636–3652.  https://doi.org/10.1002/cne.24292 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ishunina TA, van Beurden D, van der Meulen G et al (2005) Diminished aromatase immunoreactivity in the hypothalamus, but not in the basal forebrain nuclei in Alzheimer’s disease. Neurobiol Aging 26:173–194.  https://doi.org/10.1016/j.neurobiolaging.2004.03.010 PubMedCrossRefGoogle Scholar
  68. Iwabuchi J, Wako S, Tanaka T et al (2007) Analysis of the p450 aromatase gene expression in the Xenopus brain and gonad. J Steroid Biochem Mol Biol 107:149–155.  https://doi.org/10.1016/j.jsbmb.2007.01.007 PubMedCrossRefGoogle Scholar
  69. Kato A, Hojo Y, Higo S et al (2013) Female hippocampal estrogens have a significant correlation with cyclic fluctuation of hippocampal spines. Front Neural Circuits 7:149.  https://doi.org/10.3389/fncir.2013.00149 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kokras N, Pastromas N, Papasava D et al (2018) Sex differences in behavioral and neurochemical effects of gonadectomy and aromatase inhibition in rats. Psychoneuroendocrinology 87:93–107.  https://doi.org/10.1016/j.psyneuen.2017.10.007 PubMedCrossRefGoogle Scholar
  71. Konkle ATM, McCarthy MM (2011) Developmental time course of estradiol, testosterone, and dihydrotestosterone levels in discrete regions of male and female rat brain. Endocrinology 152:223–235.  https://doi.org/10.1210/en.2010-0607 PubMedCrossRefGoogle Scholar
  72. Kretz O, Fester L, Wehrenberg U et al (2004) Hippocampal synapses depend on hippocampal estrogen synthesis. J Neurosci 24:5913–5921.  https://doi.org/10.1523/JNEUROSCI.5186-03.2004 PubMedCrossRefGoogle Scholar
  73. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184.  https://doi.org/10.1146/annurev.neuro.051508.135600 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Le Page Y, Diotel N, Vaillant C et al (2010) Aromatase, brain sexualization and plasticity: the fish paradigm. Eur J Neurosci 32:2105–2115.  https://doi.org/10.1111/j.1460-9568.2010.07519.x PubMedCrossRefGoogle Scholar
  75. Leranth C, Hajszan T, MacLusky NJ (2004) Androgens increase spine synapse density in the CA1 hippocampal subfield of ovariectomized female rats. J Neurosci 24:495–499.  https://doi.org/10.1523/JNEUROSCI.4516-03.2004 PubMedCrossRefGoogle Scholar
  76. Li R, He P, Staufenbiel M, Harada N, Shen Y (2013) Brain endogenous estrogen levels determine responses to estrogen replacement therapy via regulation of BACE1 and NEP in female Alzheimer’s transgenic mice. Mol Neurobiol 47:857–867.  https://doi.org/10.1007/s12035-012-8377-3 PubMedCrossRefGoogle Scholar
  77. Liu M, Hurn PD, Roselli CE, Alkayed NJ (2007) Role of P450 aromatase in sex-specific astrocytic cell death. J Cereb Blood Flow Metab 27:135–141.  https://doi.org/10.1038/sj.jcbfm.9600331 PubMedCrossRefGoogle Scholar
  78. Liu M, Oyarzabal EA, Yang R et al (2008) A novel method for assessing sex-specific and genotype-specific response to injury in astrocyte culture. J Neurosci Methods 171:214–217.  https://doi.org/10.1016/j.jneumeth.2008.03.002 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liu M, Huangfu X, Zhao Y et al (2015) Steroid receptor coactivator-1 mediates letrozole induced downregulation of postsynaptic protein PSD-95 in the hippocampus of adult female rats. J Steroid Biochem Mol Biol 154:168–175.  https://doi.org/10.1016/j.jsbmb.2015.07.011 PubMedCrossRefGoogle Scholar
  80. Liu NJ, Murugaiyan V, Storman EM et al (2017) Estrogens synthesized and acting within a spinal oligomer suppress spinal endomorphin 2 antinociception: ebb and flow over the rat reproductive cycle. Pain 158:1903–1914.  https://doi.org/10.1097/j.pain.0000000000000991 PubMedCrossRefGoogle Scholar
  81. Luchetti S, Bossers K, Van de Bilt S et al (2011) Neurosteroid biosynthetic pathways changes in prefrontal cortex in Alzheimer’s disease. Neurobiol Aging 32:1964–1976.  https://doi.org/10.1016/j.neurobiolaging.2009.12.014 PubMedCrossRefGoogle Scholar
  82. Luchetti S, van Eden CG, Schuurman K et al (2014) Gender differences in multiple sclerosis: induction of estrogen signaling in male and progesterone signaling in female lesions. J Neuropathol Exp Neurol 73:123–135.  https://doi.org/10.1097/NEN.0000000000000037 PubMedCrossRefGoogle Scholar
  83. Martínez-Cerdeño V, Noctor SC, Kriegstein AR (2006) Estradiol stimulates progenitor cell division in the ventricular and subventricular zones of the embryonic neocortex. Eur J Neurosci 24:3475–3488.  https://doi.org/10.1111/j.1460-9568.2006.05239.x PubMedCrossRefGoogle Scholar
  84. Mehos CJ, Nelson LH, Saldanha CJ (2016) A Quantification of the injury-induced changes in central aromatase, oestrogenic milieu and steroid receptor expression in the Zebra finch. J Neuroendocrinol 28:12348.  https://doi.org/10.1111/jne.12348 PubMedCrossRefGoogle Scholar
  85. Moradpour F, Naghdi N, Fathollahi Y (2006) Anastrozole improved testosterone-induced impairment acquisition of spatial learning and memory in the hippocampal CA1 region in adult male rats. Behav Brain Res 175:223–232.  https://doi.org/10.1016/j.bbr.2006.08.037 PubMedCrossRefGoogle Scholar
  86. Moraga-Amaro R, van Waarde A, Doorduin J, de Vries EFJ (2018) Sex steroid hormones and brain function: PET imaging as a tool for research. J Neuroendocrinol 30:e12565.  https://doi.org/10.1111/jne.12565 PubMedCentralCrossRefGoogle Scholar
  87. Mouriec K, Pellegrini E, Anglade I et al (2008) Synthesis of estrogens in progenitor cells of adult fish brain: evolutive novelty or exaggeration of a more general mechanism implicating estrogens in neurogenesis? Brain Res Bull 75:274–280.  https://doi.org/10.1016/j.brainresbull.2007.10.030 PubMedCrossRefGoogle Scholar
  88. Mouriec K, Lareyre JJ, Tong SK et al (2009) Early regulation of brain aromatase (cyp19a1b) by estrogen receptors during zebrafish development. Dev Dyn 238:2641–2651.  https://doi.org/10.1002/dvdy.22069 PubMedCrossRefGoogle Scholar
  89. Mukai H, Tsurugizawa T, Ogiue-Ikeda M et al (2006) Local neurosteroid production in the hippocampus: influence on synaptic plasticity of memory. Neuroendocrinology 84:255–263.  https://doi.org/10.1159/000097747 PubMedCrossRefGoogle Scholar
  90. Naftolin F, MacLusky NJ (1982) Aromatase in the central nervous system. Cancer Res 42:3274 s–3276 sGoogle Scholar
  91. Naftolin F, Ryan KJ, Petro Z (1971) Aromatization of androstenedione by limbic system tissue from human foetuses. J Endocrinol 51:795–796PubMedCrossRefGoogle Scholar
  92. Naftolin F, Ryan KJ, Petro Z (1972) Aromatization of androstenedione by the anterior hypothalamus of adult male and female rats. Endocrinology 90:295–298.  https://doi.org/10.1210/endo-90-1-295 PubMedCrossRefGoogle Scholar
  93. Naftolin F, Horvath TL, Jakab RL et al (1996a) Aromatase immunoreactivity in axon terminals of the vertebrate brain. An immunocytochemical study on quail, rat, monkey and human tissues. Neuroendocrinology 63:149–155.  https://doi.org/10.1159/000126951 PubMedCrossRefGoogle Scholar
  94. Naftolin F, Horvath TL, Jakab RL, Leranth C, Harada N, Balthazart J (1996b) Aromatase immunoreactivity in axon terminals of the vertebrate brain. An immunocytochemical study on quail, rat, monkey and human tissues. Neuroendocrinology 63:149–155.  https://doi.org/10.1159/000126951 PubMedCrossRefGoogle Scholar
  95. Nelson BS, Black KL, Daniel JM (2016) Circulating estradiol regulates brain-derived estradiol via actions at GnRH receptors to impact memory in ovariectomized rats. eNeuro.  https://doi.org/10.1523/ENEURO.0321-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Pedersen AL, Saldanha CJ (2017) Reciprocal interactions between prostaglandin E2- and estradiol-dependent signaling pathways in the injured zebra finch brain. J Neuroinflammation 14:262.  https://doi.org/10.1186/s12974-017-1040-1 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Pedersen AL, Brownrout JL, Saldanha CJ (2018) Neuroinflammation and neurosteroidogenesis: reciprocal modulation during injury to the adult zebra finch brain. Physiol Behav 187:51–56.  https://doi.org/10.1016/j.physbeh.2017.10.013 PubMedCrossRefGoogle Scholar
  98. Pellegrini E, Mouriec K, Anglade I et al (2007) Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. J Comp Neurol 501:150–167.  https://doi.org/10.1002/cne.21222 PubMedCrossRefGoogle Scholar
  99. Peterson RS, Saldanha CJ, Schlinger BA (2001) Rapid upregulation of aromatase mRNA and protein following neural injury in the zebra finch (Taeniopygia guttata). J Neuroendocrinol 13:317–323PubMedCrossRefGoogle Scholar
  100. Peterson RS, Lee DW, Fernando G, Schlinger BA (2004) Radial glia express aromatase in the injured zebra finch brain. J Comp Neurol 475:261–269.  https://doi.org/10.1002/cne.20157 PubMedCrossRefGoogle Scholar
  101. Peterson RS, Yarram L, Schlinger BA, Saldanha CJ (2005) Aromatase is pre-synaptic and sexually dimorphic in the adult zebra finch brain. Proc Biol Sci 272:2089–2096.  https://doi.org/10.1098/rspb.2005.3181 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pietranera L, Bellini MJ, Arévalo MA et al (2011) Increased aromatase expression in the hippocampus of spontaneously hypertensive rats: effects of estradiol administration. Neuroscience 174:151–159.  https://doi.org/10.1016/j.neuroscience.2010.11.044 PubMedCrossRefGoogle Scholar
  103. Prange-Kiel J, Wehrenberg U, Jarry H, Rune GM (2003) Para/autocrine regulation of estrogen receptors in hippocampal neurons. Hippocampus 13:226–234.  https://doi.org/10.1002/hipo.10075 PubMedCrossRefGoogle Scholar
  104. Remage-Healey L, Maidment NT, Schlinger BA (2008) Forebrain steroid levels fluctuate rapidly during social interactions. Nat Neurosci 11:1327–1334.  https://doi.org/10.1038/nn.2200 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Rohmann KN, Schlinger BA, Saldanha CJ (2007) Subcellular compartmentalization of aromatase is sexually dimorphic in the adult zebra finch brain. Dev Neurobiol 67:1–9.  https://doi.org/10.1002/dneu.20303 PubMedCrossRefGoogle Scholar
  106. Roselli CE, Resko JA (1987) The distribution and regulation of aromatase activity in the central nervous system. Steroids 50:495–508PubMedCrossRefGoogle Scholar
  107. Roselli CE, Horton LE, Resko JA (1985) Distribution and regulation of aromatase activity in the rat hypothalamus and limbic system. Endocrinology 117:2471–2477.  https://doi.org/10.1210/endo-117-6-2471 PubMedCrossRefGoogle Scholar
  108. Roselli CE, Abdelgadir SE, Resko JA (1997) Regulation of aromatase gene expression in the adult rat brain. Brain Res Bull 44:351–357PubMedCrossRefGoogle Scholar
  109. Rudolph LM, Cornil CA, Mittelman-Smith MA et al (2016) Actions of steroids: new neurotransmitters. J Neurosci 36:11449–11458.  https://doi.org/10.1523/JNEUROSCI.2473-16.2016 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ruiz-Palmero I, Ortiz-Rodriguez A, Melcangi RC et al (2016) Oestradiol synthesized by female neurons generates sex differences in neuritogenesis. Sci Rep 6:31891.  https://doi.org/10.1038/srep31891 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Saldanha CJ, Rohmann KN, Coomaralingam L, Wynne RD (2005) Estrogen provision by reactive glia decreases apoptosis in the zebra finch (Taeniopygia guttata). J Neurobiol 64:192–201.  https://doi.org/10.1002/neu.20147 PubMedCrossRefGoogle Scholar
  112. Saldanha CJ, Remage-Healey L, Schlinger BA (2011) Synaptocrine signaling: steroid synthesis and action at the synapse. Endocr Rev 32:532–549.  https://doi.org/10.1210/er.2011-0004 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sasano H, Takashashi K, Satoh F et al (1998) Aromatase in the human central nervous system. Clin Endocrinol (Oxf) 48:325–329CrossRefGoogle Scholar
  114. Scarduzio M, Panichi R, Pettorossi VE, Grassi S (2013) Synaptic long-term potentiation and depression in the rat medial vestibular nuclei depend on neural activation of estrogenic and androgenic signals. PloS ONE 8:e80792.  https://doi.org/10.1371/journal.pone.0080792 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Schaeffer V, Meyer L, Patte-Mensah C et al (2010) Sciatic nerve injury induces apoptosis of dorsal root ganglion satellite glial cells and selectively modifies neurosteroidogenesis in sensory neurons. Glia 58:169–180.  https://doi.org/10.1002/glia.20910 PubMedCrossRefGoogle Scholar
  116. Simpson E, Rubin G, Clyne C et al (1999) Local estrogen biosynthesis in males and females. Endocr Relat Cancer 6:131–137PubMedCrossRefGoogle Scholar
  117. Stanić D, Dubois S, Chua HK et al (2014) Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors α and β, and androgen receptors. PloS ONE 9:e90451.  https://doi.org/10.1371/journal.pone.0090451 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Stoffel-Wagner B, Watzka M, Schramm J et al (1999) Expression of CYP19 (aromatase) mRNA in different areas of the human brain. J Steroid Biochem Mol Biol 70:237–241PubMedCrossRefGoogle Scholar
  119. Storman EM, Liu NJ, Wessendorf MW, Gintzler AR (2018) Physical linkage of estrogen receptor α and aromatase in rat: oligocrine and endocrine actions of CNS-produced estrogens. Endocrinology 159:2683–2697.  https://doi.org/10.1210/en.2018-00319 PubMedCrossRefGoogle Scholar
  120. Strobl-Mazzulla PH, Nuñez A, Pellegrini E et al (2010) Progenitor radial cells and neurogenesis in pejerrey fish forebrain. Brain Behav Evol 76:20–31.  https://doi.org/10.1159/000316022 PubMedCrossRefGoogle Scholar
  121. Sun C, Liu Y, Liu Y et al (2017) Characterization of aromatase expression in the spinal cord of an animal model of familial ALS. Brain Res Bull 132:180–189.  https://doi.org/10.1016/j.brainresbull.2017.05.016 PubMedCrossRefGoogle Scholar
  122. Tanaka M, Sokabe M (2012) Continuous de novo synthesis of neurosteroids is required for normal synaptic transmission and plasticity in the dentate gyrus of the rat hippocampus. Neuropharmacology 62:2373–2387.  https://doi.org/10.1016/j.neuropharm.2012.02.007 PubMedCrossRefGoogle Scholar
  123. Tozzi A, de Iure A, Tantucci M et al (2015) Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system. Front Cell Neurosci 9:192.  https://doi.org/10.3389/fncel.2015.00192 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Tran M, Kuhn JA, Bráz JM, Basbaum AI (2017) Neuronal aromatase expression in pain processing regions of the medullary and spinal cord dorsal horn. J Comp Neurol 525:3414–3428.  https://doi.org/10.1002/cne.24269 PubMedCrossRefGoogle Scholar
  125. Tuscher JJ, Szinte JS, Starrett JR et al (2016) Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice. Horm Behav 83:60–67.  https://doi.org/10.1016/j.yhbeh.2016.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Unger EK, Burke KJ, Yang CF et al (2015) Medial amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep 10:453–462.  https://doi.org/10.1016/j.celrep.2014.12.040 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Vahaba DM, Remage-Healey L (2018) Neuroestrogens rapidly shape auditory circuits to support communication learning and perception: evidence from songbirds. Horm Behav  https://doi.org/10.1016/j.yhbeh.2018.03.007 PubMedCrossRefGoogle Scholar
  128. van den Buuse M, Simpson ER, Jones MEE (2003) Prepulse inhibition of acoustic startle in aromatase knock-out mice: effects of age and gender. Genes Brain Behav 2:93–102PubMedCrossRefGoogle Scholar
  129. Van der Linden A, Balthazart J (2018) Rapid changes in auditory processing in songbirds following acute aromatase inhibition as assessed by fMRI. Horm Behav.  https://doi.org/10.1016/j.yhbeh.2018.03.011 PubMedCrossRefGoogle Scholar
  130. Vierk R, Glassmeier G, Zhou L et al (2012) Aromatase inhibition abolishes LTP generation in female but not in male mice. J Neurosci 32:8116–8126.  https://doi.org/10.1523/JNEUROSCI.5319-11.2012 PubMedCrossRefGoogle Scholar
  131. Wade J (2001) Zebra finch sexual differentiation: the aromatization hypothesis revisited. Microsc Res Tech 54:354–363.  https://doi.org/10.1002/jemt.1148 PubMedCrossRefGoogle Scholar
  132. Yague JG, Muñoz A, de Monasterio-Schrader P et al (2006) Aromatase expression in the human temporal cortex. Neuroscience 138:389–401.  https://doi.org/10.1016/j.neuroscience.2005.11.054 PubMedCrossRefGoogle Scholar
  133. Yague JG, Wang AC-J, Janssen WGM et al (2008) Aromatase distribution in the monkey temporal neocortex and hippocampus. Brain Res 1209:115–127.  https://doi.org/10.1016/j.brainres.2008.02.061 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Yague JG, Azcoitia I, DeFelipe J et al (2010) Aromatase expression in the normal and epileptic human hippocampus. Brain Res 1315:41–52.  https://doi.org/10.1016/j.brainres.2009.09.111 PubMedCrossRefGoogle Scholar
  135. Yuen EY, Wei J, Yan Z (2016) Estrogen in prefrontal cortex blocks stress-induced cognitive impairments in female rats. J Steroid Biochem Mol Biol 160:221–226.  https://doi.org/10.1016/j.jsbmb.2015.08.028 PubMedCrossRefGoogle Scholar
  136. Zhang QG, Wang R, Tang H et al (2014) Brain-derived estrogen exerts anti-inflammatory and neuroprotective actions in the rat hippocampus. Mol Cell Endocrinol 389:84–91.  https://doi.org/10.1016/j.mce.2013.12.019 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Zhang Z-L, Qin P, Liu Y et al (2017) Alleviation of ischaemia-reperfusion injury by endogenous estrogen involves maintaining Bcl-2 expression via the ERα signalling pathway. Brain Res 1661:15–23.  https://doi.org/10.1016/j.brainres.2017.02.004 PubMedCrossRefGoogle Scholar
  138. Zhao Y, He L, Zhang Y et al (2017) Estrogen receptor alpha and beta regulate actin polymerization and spatial memory through an SRC-1/mTORC2-dependent pathway in the hippocampus of female mice. J Steroid Biochem Mol Biol 174:96–113.  https://doi.org/10.1016/j.jsbmb.2017.08.003 PubMedCrossRefGoogle Scholar
  139. Zhou L, Fester L, von Blittersdorff B et al (2010) Aromatase inhibitors induce spine synapse loss in the hippocampus of ovariectomized mice. Endocrinology 151:1153–1160.  https://doi.org/10.1210/en.2009-0254 PubMedCrossRefGoogle Scholar
  140. Zuloaga KL, Davis CM, Zhang W, Alkayed NJ (2014) Role of aromatase in sex-specific cerebrovascular endothelial function in mice. Am J Physiol Heart Circ Physiol 306:H929–H937.  https://doi.org/10.1152/ajpheart.00698.2013 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto CajalConsejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  2. 2.Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain

Personalised recommendations