Advertisement

Cellular and Molecular Neurobiology

, Volume 38, Issue 5, pp 995–1007 | Cite as

ROS as Regulators of Mitochondrial Dynamics in Neurons

  • Carolina Cid-Castro
  • Diego Rolando Hernández-Espinosa
  • Julio Morán
Review Paper

Abstract

Mitochondrial dynamics is a complex process, which involves the fission and fusion of mitochondrial outer and inner membranes. These processes organize the mitochondrial size and morphology, as well as their localization throughout the cells. In the last two decades, it has become a spotlight due to their importance in the pathophysiological processes, particularly in neurological diseases. It is known that Drp1, mitofusin 1 and 2, and Opa1 constitute the core of proteins that coordinate this intricate and dynamic process. Likewise, changes in the levels of reactive oxygen species (ROS) lead to modifications in the expression and/or activity of the proteins implicated in the mitochondrial dynamics, suggesting an involvement of these molecules in the process. In this review, we discuss the role of ROS in the regulation of fusion/fission in the nervous system, as well as the involvement of mitochondrial dynamics proteins in neurodegenerative diseases.

Keywords

Mitochondrial dynamics ROS Neurons Cell death Neurodegenerative diseases 

Notes

Acknowledgements

The authors appreciate the contribution of Gabriela Gutierrez-Chávez for the elaboration of the figures. This study was supported by DGAPA-PAPIIT, UNAM (IN-210716), Fundación Miguel Alemán, México and CONACyT (285184).

Author Contributions

CC-C and DRH-E collected the information and wrote the manuscript with critical revision and comments by JM.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interests.

References

  1. Alavi MV, Bette S, Schimpf S, Schuettauf F, Schraermeyer U, Wehrl HF, Wissinger B (2007) A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain 130(4):1029–1042.  https://doi.org/10.1093/brain/awm005 PubMedCrossRefGoogle Scholar
  2. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26(2):211–215.  https://doi.org/10.1038/79944 PubMedCrossRefGoogle Scholar
  3. Altanbyek V, Cha SJ, Kang GU, Im DS, Lee S, Kim HJ, Kim K (2016) Imbalance of mitochondrial dynamics in Drosophila models of amyotrophic lateral sclerosis. Biochem Biophys Res Commun 481(3–4):259–264.  https://doi.org/10.1016/j.bbrc.2016.10.134 PubMedCrossRefGoogle Scholar
  4. Amati-Bonneau P, Milea D, Bonneau D, Chevrollier A, Ferré M, Guillet V, Reynier P (2009) OPA1-associated disorders: phenotypes and pathophysiology. Int J Biochem Cell Biol 41(10):1855–1865.  https://doi.org/10.1016/j.biocel.2009.04.012 PubMedCrossRefGoogle Scholar
  5. Amchenkova AA, Bakeeva LE, Chentsov YS, Skulachev VP, Zorov DB (1988) Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblast and mitochondrial clusters in cardiomyocytes. J Cell Sci 107(2):481–495.  https://doi.org/10.1083/jcb.107.2.481 CrossRefGoogle Scholar
  6. Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T (2014) The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204(6):919–929.  https://doi.org/10.1083/jcb.201308006 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Andreyev AY, Kushnareva YE, Murphy AN, Starkov AA, Diego S, Jolla L, Jolla L (2015) Mitochondrial ROS Metabolism: 10 Years Later A. HHS Pub Access 80(5):517–531.  https://doi.org/10.1134/S0006297915050028 CrossRefGoogle Scholar
  8. Angelova PR, Abramov AY (2016) Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Biol Med 100:81–85.  https://doi.org/10.1016/j.freeradbiomed.2016.06.005 PubMedCrossRefGoogle Scholar
  9. Azzedine H, Senderek J, Rivolta C, Chrast R (2012) Molecular genetics of charcot-marie-tooth disease: from genes to genomes. Mol Syndromol. 3(5):204–214.  https://doi.org/10.1159/000343487 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Balog J, Mehta SL, Vemuganti R (2016) Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cereb Blood Flow Metab.  https://doi.org/10.1177/0271678X16671528 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bertholet AM, Millet AM, Guillermin O, Daloyau M, Davezac N, Miquel MC, Belenguer P (2013) OPA1 loss of function affects in vitro neuronal maturation. Brain 136(5):1518–1533.  https://doi.org/10.1093/brain/awt060 PubMedCrossRefGoogle Scholar
  12. Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, Belenguer P (2016) Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 90:3–19.  https://doi.org/10.1016/j.nbd.2015.10.011 PubMedCrossRefGoogle Scholar
  13. Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J, Shaw JM (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1(5):298–304.  https://doi.org/10.1038/13014 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bleazard W, Mccaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Shaw JM (2013) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1(5):298–304.  https://doi.org/10.1038/13014 CrossRefGoogle Scholar
  15. Burte F, Carelli V, Chinnery PF, Yu-Wai-Man P (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11(1):11–24.  https://doi.org/10.1038/nrneurol.2014.228 PubMedCrossRefGoogle Scholar
  16. Cagalinec M, Safiulina D, Liiv M, Liiv J, Choubey V, Wareski P, Veksier V, Kaasik A (2013) Principles of the mitochondrial fusion and fission cycle in neurons. J Cell Sci 126:2187–2197.  https://doi.org/10.1242/jcs.118844 PubMedCrossRefGoogle Scholar
  17. Cereghetti GM, Stangherlin A, de Brito OM, Chang CR, Blackstone C, Bernardi P, Scorrano L (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. PNAS 105(41):15803–15808.  https://doi.org/10.1073/pnas.0808249105 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chang CR, Blackstone C (2007a) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282(30):21583–21587.  https://doi.org/10.1074/jbc.C700083200 PubMedCrossRefGoogle Scholar
  19. Chang CR, Blackstone C (2007b) Drp1 phosphorylation and mitochondrial regulation. EMBO Rep 8(12):1088–1089.  https://doi.org/10.1038/sj.embor.7401118 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chang CR, Manlandro CM, Arnoult D, Stadler J, Posey AE, Hill RB, Blackstone C (2010) A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J Biol Chem 285(42):32494–32503.  https://doi.org/10.1074/jbc.M110.142430
  21. Chao de la Barca JM, Prunier-Mirebeau D, Amati-Bonneau P, Ferré M, Sarzi E, Bris C, Reynier P (2016) OPA1-related disorders: diversity of clinical expression, modes of inheritance and pathophysiology. Neurobiol Dis 90:20–26.  https://doi.org/10.1016/j.nbd.2015.08.015 PubMedCrossRefGoogle Scholar
  22. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160(2):189–200.  https://doi.org/10.1083/jcb.200211046 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chiang YY, Chen SL, Hsiao YT, Huang CH, Lin TY, Chiang IP, Chow KC (2009) Nuclear expression of dynamin-related protein 1 in lung adenocarcinomas. Mod Pathol 22(9):1139–1150.  https://doi.org/10.1038/modpathol.2009.83 PubMedCrossRefGoogle Scholar
  24. Cho D, Nakamura T, Fang J, Cieplak P, Gu Z, Lipton SA (2009) S-Nitrosylation of Drp1 mediates β-amyloid–related mitochondrial fission and neuronal injury. PNAS Injury 324(5923):1–11.  https://doi.org/10.1126/science.1171091 CrossRefGoogle Scholar
  25. Cho DH, Nakamura T, Lipton SA (2010) Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 67(20):3435–3447.  https://doi.org/10.1007/s00018-010-0435-2 PubMedCrossRefGoogle Scholar
  26. Cho MH, Kim DH, Choi JE, Chang EJ, Seung-Yongyoon (2012) Increased phosphorylation of dynamin-related protein 1 and mitochondrial fission in okadaic acid-treated neurons. Brain Res 1454:100–110.  https://doi.org/10.1016/j.brainres.2012.03.010 PubMedCrossRefGoogle Scholar
  27. Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2012) Mitochondrial importance in Alzheimer’s, Huntington’s and Parkinson’s diseases. Adv Exp Med Biol 724:205–221.  https://doi.org/10.1007/978-1-4614-0653-2_16 PubMedCrossRefGoogle Scholar
  28. Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8(10):939–944.  https://doi.org/10.1038/sj.embor.7401062 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cuesta A, Pedrola L, Sevilla T, García-Planells J, Chumillas MJ, Mayordomo F, Palau F (2002) The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat Genet 30(1):22–25.  https://doi.org/10.1038/ng798 PubMedCrossRefGoogle Scholar
  30. Dankwa L, Richardson J, Motley WW, Züchner S, Scherer SS (2018) A mutation in the heptad repeat 2 domains of MFN2 in a large CMT2A family. J Peripher Nerv Syst.  https://doi.org/10.1111/jns.12248 PubMedCrossRefGoogle Scholar
  31. Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26(2):207–210.  https://doi.org/10.1038/79936 PubMedCrossRefGoogle Scholar
  32. Delettre C, Griffoin JM, Kaplan J, Dollfus H, Lorenz B, Faivre L, Hamel C (2001) Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 109(6):584–591.  https://doi.org/10.1007/s00439-001-0633 PubMedCrossRefGoogle Scholar
  33. Devoto MP, Dimopoulos N, Alloatti M, Pardi MB, Saez TM, Otero MG, Falzone TL (2017) αsynuclein control of mitochondrial homeostasis in human-derived neurons is disrupted by mutations associated with Parkinson’s disease. Sci Rep 7(1):1–13.  https://doi.org/10.1038/s41598-017-05334-9 CrossRefGoogle Scholar
  34. Dietrich MO, Liu ZW, Horvath TL (2013) Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 155(1):188–199.  https://doi.org/10.1016/j.cell.2013.09.004 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, Langer T (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187(7):1023–1036.  https://doi.org/10.1083/jcb.200906084 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Filichia E, Hoffer B, Qi X, Luo Y (2016) Inhibition of Drp1 mitochondrial translocation provides neural protection in dopaminergic system in a Parkinson’s disease model induced by MPTP. Sci Rep.  https://doi.org/10.1038/srep32656 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fischer TD, Hylin MJ, Zhao J, Moore AN, Waxham MN, Dash PK (2016) Altered mitochondrial dynamics and TBI pathophysiology. Front Syst Neurosci.  https://doi.org/10.3389/fnsys.2016.00029 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Flippo KH, Strack S (2017) An emerging role for mitochondrial dynamics in schizophrenia. Schizophr Res 187:26–32.  https://doi.org/10.1016/j.schres.2017.05.003 PubMedCrossRefPubMedCentralGoogle Scholar
  39. Frezza C (2017) Mitochondrial metabolites: undercover signalling molecules. Interface Focus 7(2):20160100.  https://doi.org/10.1098/rsfs.2016.0100 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126(1):177–189.  https://doi.org/10.1016/j.cell.2006.06.025 PubMedCrossRefGoogle Scholar
  41. Galluzzi L, Bravo-San Pedro JM, Kroemer G (2014) Organelle-specific initiation of cell death. Nat Cell Biol 16(8):728–736.  https://doi.org/10.1038/ncb3005 PubMedCrossRefGoogle Scholar
  42. Gao J, Wang L, Liu J, Xie F, Su B, Wang X (2017) Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants 6(2):25.  https://doi.org/10.3390/antiox6020025 PubMedCentralCrossRefGoogle Scholar
  43. Gautier CA, Erpapazoglou Z, Mouton-Liger F, Muriel MP, Cormier F, Bigou S, Duffaure S, Girard M, Foret B, Iannielli A, Broccoli V, Dalle C, Bohl D, Michel PP, Corvol JC, Brice A, Corti O (2016) The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations. Hum Mol Genet.  https://doi.org/10.1093/hmg/ddw148 PubMedCrossRefGoogle Scholar
  44. Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Gen 19(24):4861–4870.  https://doi.org/10.1093/hmg/ddq419 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13(5):589–598.  https://doi.org/10.1038/ncb2220 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gray JJ, Zommer AE, Bouchard RJ, Duval N, Blackstone C, Linseman DA (2013) N-terminal cleavage of the mitochondrial fusion GTPase OPA1 occurs via a caspase-independent mechanism in cerebellar granule neurons exposed to oxidative or nitrosative stress. Brain Res 1494:28–43.  https://doi.org/10.1016/j.brainres.2012.12.001 PubMedCrossRefGoogle Scholar
  47. Guerra de Souza AC, Prediger RD, Cimarosti H (2016) SUMO-regulated mitochondrial function in Parkinson’s disease. J Neurochem 137(5):673–686.  https://doi.org/10.1111/jnc.13599 PubMedCrossRefGoogle Scholar
  48. Guo K, Lu J, Huang Y, Wu M, Zhang L, Yu H, Jia W (2015) Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS ONE 10(4):1–16.  https://doi.org/10.1371/journal.pone.0125176 CrossRefGoogle Scholar
  49. Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H, Matsushita M (2008) CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182(3):573–585.  https://doi.org/10.1083/jcb.200802164 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Han XJ, Hu YY, Yang ZJ, Jiang LP, Shi SL, Li YR, Wan YY (2017) Amyloid β-42 induces neuronal apoptosis by targeting mitochondria. Mol Med Rep 16(4):4521–4528.  https://doi.org/10.3892/mmr.2017.7203 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hering T, Kojer K, Birth N, Hallitsch J, Taanman JW, Orth M (2017) Mitochondrial cristae remodelling is associated with disrupted OPA1 oligomerisation in the Huntington’s disease R6/2 fragment model. Exp Neurol 288:167–175.  https://doi.org/10.1016/j.expneurol.2016.10.017 PubMedCrossRefGoogle Scholar
  52. Hom JR, Gewandter JS, Michael L, Sheu SS, Yoon Y (2007) Thapsigargin induces biphasic fragmentation of mitochondria through calcium-mediated mitochondrial fission and apoptosis. J Cell Physiol 212(2):498–508.  https://doi.org/10.1002/jcp.21051 PubMedCrossRefGoogle Scholar
  53. Huang P, Galloway CA, Yoon Y (2011) Control of mitochondrial morphology through differential interactions of mitochondrial fusion and fission proteins. PLoS ONE 6(5):e20655.  https://doi.org/10.1371/journal.pone.0020655 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Huang X, Sun L, Zhao T, Zhang W, Xu J, Cheng H (2013) Kissing and nanotunneling mediate intermitochondrial communication in the heart. PNAS 110(8):2846–2851.  https://doi.org/10.1073/pnas.1300741110 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hung HC, Cheng SS, Cheung Y, Wuwongse S, Zhang NQ, Ho Y, Lee SM, Chang RC (2018) A reciprocal relationship between reactive oxygen species and mitochondrial dynamics in neurodegeneration. Redox Biol 14:7–19.  https://doi.org/10.1016/j.redox.2017.08.010 PubMedCrossRefGoogle Scholar
  56. Ingerman E, Perkins EM, Marino M, Mears JA, McCaffery JM, Hinshaw JE, Nunnari J (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol 170(7):1021–1027.  https://doi.org/10.1083/jcb.200506078 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ishihara N, Fujita Y, Oka T, Mihara K (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO 25(13):2966–2977.  https://doi.org/10.1038/sj.emboj.7601184 CrossRefGoogle Scholar
  58. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Mihara K (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11(8):958–966.  https://doi.org/10.1038/ncb1907 PubMedCrossRefGoogle Scholar
  59. Itoh K, Nakamura K, Iijima M, Sesaki H (2013) Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 23(2):64–71.  https://doi.org/10.1016/j.tcb.2012.10.006 PubMedCrossRefGoogle Scholar
  60. Jahani-Asl A, Cheung E, Neuspiel M, MacLaurin J, Fortin A, Park D, McBride H, Slack R (2007) Mitofusin 2 protects cerebellar granule neurons against injury-induced cell death. J Biol Chem 282(33):23788–23798.  https://doi.org/10.1074/jbc.M703812200 PubMedCrossRefGoogle Scholar
  61. Jahani-Asl A, Pilon-Larose K, Xu W, MacLaurin JG, Park DS, McBride HM, Slack RS (2011) The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity. J Biol Chem 286(6):4772–4782.  https://doi.org/10.1074/jbc.M110.167155 PubMedCrossRefGoogle Scholar
  62. Jellinger KA (2009) Recent advances in our understanding of neurodegeneration. J Neural Transm 116(9):1111–1162.  https://doi.org/10.1007/s00702-009-0240-y PubMedCrossRefGoogle Scholar
  63. Jin HS, Sõber S, Hong KW, Org E, Kim BY, Laan M, Jeong SY (2011) Age-dependent association of the polymorphisms in the mitochondria-shaping gene, OPA1, with blood pressure and hypertension in Korean population. Am J Hypertens 24(10):1127–1135.  https://doi.org/10.1038/ajh.2011.131 PubMedCrossRefGoogle Scholar
  64. Jones BL, Smith SM (2016) Calcium-sensing receptor: a key target for extracellular calcium signaling in neurons. Front Physiol 7:116.  https://doi.org/10.3389/fphys.2016.00116 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Joshi AU, Saw NL, Shamlo M, Mochly-Rosen D (2017) Drp1/Fis1 interaction mediates mitochondrial dysfunction, bioenergetic failure and cognitive decline in Alzheimer’s disease. Oncotarget 5(5):6128–6143.  https://doi.org/10.18632/oncotarget.23640 CrossRefGoogle Scholar
  66. Kageyama Y, Zhang Z, Roda R, Fukaya M, Wakabayashi J, Wakabayashi N, Sesaki H (2012) Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage. J Cell Biol 197(4):535–551.  https://doi.org/10.1083/jcb.201110034 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kageyama RM, Iijima M, Sesaki H (2015) PARK2/Parkin becomes critical when DNM1L/Drp1 is absent. Autophagy 11(3):573–574.  https://doi.org/10.1080/15548627.2015.1017193 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kandimalla R, Reddy PH (2016) Multiple faces of dynamin-related protein 1 and its role in Alzheimer’s disease pathogenesis. Biochim Biophys Acta 4:814–828.  https://doi.org/10.1016/j.bbadis.2015.12.018 CrossRefGoogle Scholar
  69. Kanfer G, Peterka M, Arzhanik VK, Drobyshev AL, Ataullakhanov FI, Volkov VA, Kornmann B (2017) CENP-F couples cargo to growing and shortening microtubule ends. Mol Biol Cell 28(18):2400–2409.  https://doi.org/10.1091/mbc.E16-11-0756 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kann O, Kovacs R (2007) Mitochondria and neuronal activity. AJP 292(2):C641–C657.  https://doi.org/10.1152/ajpcell.00222.2006 CrossRefGoogle Scholar
  71. Kaplan A, Kent CB, Charron F, Fournier AE (2014) Switching responses: spatial and temporal regulators of axon guidance. Mol Neurobiol 49(2):1077–1086.  https://doi.org/10.1007/s12035-013-8582-8 PubMedCrossRefGoogle Scholar
  72. Karbowski M, Neutzner A, Youle RJ (2007) The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol 178(1):71–84.  https://doi.org/10.1083/jcb.200611064 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Khacho M, Slack RS (2018) Mitochondrial dynamics in the regulation of neurogenesis: from development to the adult brain. Dev Dyn 247(1):47–52.  https://doi.org/10.1002/dvdy.24538 PubMedCrossRefGoogle Scholar
  74. Kim JE, Kang TC (2017) p47Phox/CDK5/DRP1-mediated mitochondrial fission evokes PV cell degeneration in the rat dentate gyrus following status epilepticus. Front Cell Neur 11(September):1–13.  https://doi.org/10.3389/fncel.2017.00267 CrossRefGoogle Scholar
  75. Kim DI, Lee KH, Gabr AA, Choi GE, Kim JS, Ko SH, Han HJ (2016) Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochim Biophys Acta 1863(11):2820–2834.  https://doi.org/10.1016/j.bbamcr.2016.09.003 CrossRefGoogle Scholar
  76. Kim J, Moody JP, Edgerly CK, Bordiuk OL, Cormier K, Smith K, Beal MF, Ferrante RJ (2010a) Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet 19(20):3919–3935.  https://doi.org/10.1093/hmg/ddq306 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kim JJ, Lee SB, Park JK, Yoo YD (2010b) TNF-α-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-XL. Cell Death Differ 17(9):1420–1434.  https://doi.org/10.1038/cdd.2010.19 PubMedCrossRefGoogle Scholar
  78. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9(7):505–518.  https://doi.org/10.1038/nrn2417 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Komuro Y, Galas L, Lebon A, Raoult E, Fahrion JK, Tilot A, Kumada T, Ohno N, Vaudry D, Komuro H (2015) The role of calcium and cyclic nucleotide signaling in cerebellar granule cell migration under normal and pathological conditions. Dev Neurobiol 75(4):369–387.  https://doi.org/10.1002/dneu.22219 PubMedCrossRefGoogle Scholar
  80. Kuruva CS, Manczak M, Yin X, Ogunmokun G, Reddy AP, Reddy PH (2017) Aqua-soluble DDQ reduces the levels of Drp1 and Aβ and inhibits abnormal interactions between Aβ and Drp1 and protects Alzheimer’s disease neurons from Aβ- and Drp1-induced mitochondrial and synaptic toxicities. Hum Mol Genet 26(17):3375–3395.  https://doi.org/10.1093/hmg/ddx226 PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kuznetsov AV, Hermann M, Saks V, Hengster P, Margreiter R (2009) The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 41(10):1928–1939.  https://doi.org/10.1016/j.biocel.2009.03.007 PubMedCrossRefGoogle Scholar
  82. Labrousse AM, Zappaterra MD, Rube DA, Bliek AM, Bliek AM, Bliek AM (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4(5):815–826.  https://doi.org/10.1016/S1097-2765(00)80391-3 PubMedCrossRefGoogle Scholar
  83. Lackner LL (2014) Shaping the dynamic mitochondrial network. BMC Biol 12(1):35.  https://doi.org/10.1186/1741-7007-12-35 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, Kornblum HI (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8(1):59–71.  https://doi.org/10.1016/j.stem.2010.11.028 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Leboucher GP, Tsai YC, Yang M, Shaw KC, Zhou M, Veenstra TD, Weissman AM (2012) Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell 47(4):547–557.  https://doi.org/10.1016/j.molcel.2012.05.041 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lee H, Yoon Y (2016) Mitochondrial fission and fusion. Biochem Soc Trans 44(6):1725–1735.  https://doi.org/10.1042/BST20160129 PubMedCrossRefGoogle Scholar
  87. Lee SB, Kim JJ, Kim TW, Kim BS, Lee MS, Do Yoo Y (2010) Serum deprivation-induced reactive oxygen species production is mediated by Romo1. Apoptosis 15(2):204–218.  https://doi.org/10.1007/s10495-009-0411-1 PubMedCrossRefGoogle Scholar
  88. Liguori M, La Russa A, Manna I, Andreoli V, Caracciolo M, Spadafora P, Cittadella R, Quattrone A (2008) A phenotypic variation of dominant optic atrophy and deafness (ADOAD) due to a novel OPA1 mutation. J Neurol 255(1):127–129.  https://doi.org/10.1007/s00415-008-0571-x PubMedCrossRefGoogle Scholar
  89. Mailloux RJ, Jin X, Willmore WG (2013) Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol 19(2):123–139.  https://doi.org/10.1016/j.redox.2013.12.011 CrossRefGoogle Scholar
  90. Manczak M, Sesaki H, Kageyama Y, Reddy PH (2012) Dynamin-related protein 1 heterozygote knockout mice do not have synaptic and mitochondrial deficiencies. BBA Mol Basis Dis 1822(6):862–874.  https://doi.org/10.1016/j.bbadis.2012.02.017 CrossRefGoogle Scholar
  91. Manczak M, Kandimalla R, Fry D, Sesaki H, Reddy P (2016) Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer’s disease. Hum Mol Gen 25(23):5148–5166.  https://doi.org/10.1093/hmg/ddw330 PubMedCrossRefGoogle Scholar
  92. Manczak M, Kandimalla R, Yin X, Reddy PH (2018) Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum Mol Genet 27(8):1332–1342.  https://doi.org/10.1093/hmg/ddy042 PubMedCrossRefGoogle Scholar
  93. Martín-Maestro P, Gargini R, García E, Perry G, Avila J, García-Escudero V (2017) Slower dynamics and aged mitochondria in sporadic Alzheimer’s disease. Oxid Med Cell Longev 2017:9302761.  https://doi.org/10.1155/2017/9302761
  94. Martorell-Riera A, Segarra-Mondejar M, Munoz JP, Ginet V, Olloquequi J, Perez-Clausell J, Soriano FX (2014) Mfn2 downregulation in excitotoxicity causes mitochondrial dysfunction and delayed neuronal death. EMBO Journal 33(20):2388–2407.  https://doi.org/10.15252/embj.201488327
  95. Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18(1):20–26.  https://doi.org/10.1038/nsmb.1949 PubMedCrossRefGoogle Scholar
  96. Millet AM, Bertholet AM, Daloyau M, Reynier P, Galinier A, Devin A, Davezac N (2016) Loss of functional OPA1 unbalances redox state: implications in dominant optic atrophy pathogenesis. Ann Clin Transl Neurol 3(6):408–421.  https://doi.org/10.1002/acn3.305
  97. Mironov SL (2009) Complexity of mitochondrial dynamics in neurons and its control by ADP produced during synaptic activity. Int J Biochem Cell Biol 41(10):2005–2014.  https://doi.org/10.1016/j.biocel.2009.04.009 PubMedCrossRefGoogle Scholar
  98. Mozdy AD, Shaw JM (2003) A fuzzy mitochondrial fusion apparatus comes into focus. Nat Rev Mol Cell Biol 4(6):468–478.  https://doi.org/10.1038/nrm1125 PubMedCrossRefGoogle Scholar
  99. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13.  https://doi.org/10.1042/BJ20081386 PubMedCrossRefGoogle Scholar
  100. Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S (2006) MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep 7(10):1019–1022.  https://doi.org/10.1038/sj.embor.7400790 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nayernia Z, Jaquet V, Krause KH (2014) New insights on NOX enzymes in the central nervous system. Antioxid Redox Signal 20(17):2815–2837.  https://doi.org/10.1089/ars.2013.5703 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Norton M, Cheuk-Him A, Baird S, Dumoulin A, Shutt T, Mah N, Screaton RA (2014) ROMO1 is an essential redox-dependent regulator of mitochondrial dynamics. Sci Signal 7(310):ra10 http://doi.org/10.1126/scisignal.2004374
  103. Olguín-Albuerne M, Morán J (2015) ROS produced by NOX2 controls in vitro development of cerebellar granule neurons development. ASN Neuro 7(2):1–28.  https://doi.org/10.1177/1759091415578712 CrossRefGoogle Scholar
  104. Ordonez DG, Lee MK, Feany MB (2017) α-synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron 97(1):108–124.e6.  https://doi.org/10.1016/j.neuron.2017.11.036 PubMedCrossRefGoogle Scholar
  105. Otera H, Mihara K (2011) Molecular mechanisms and physiologic functions of mitochondrial dynamics. J Biochem 149(3):241–251PubMedCrossRefGoogle Scholar
  106. Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT (2011) MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12(6):565–573.  https://doi.org/10.1038/embor.2011.54 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Pareyson D, Saveri P, Sagnelli A, Piscosquito G (2015) Mitochondrial dynamics and inherited peripheral nerve diseases. Neurosci Lett 596:66–77.  https://doi.org/10.1016/j.neulet.2015.04.001
  108. Park S, Yang JS, Jang SK, Kim S (2009) Construction of functional interaction networks through consensus localization predictions of the human proteome. J Proteome Res 8(7):3367–3376.  https://doi.org/10.1021/pr900018z PubMedCrossRefGoogle Scholar
  109. Pernas L, Scorrano L (2016) Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78(1):505–531.  https://doi.org/10.1146/annurev-physiol-021115-105011 PubMedCrossRefGoogle Scholar
  110. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. IJCB 30(1):11–26.  https://doi.org/10.1007/s12291-014-0446-0 PubMedCrossRefGoogle Scholar
  111. Piras S, Furfaro AL, Domenicotti C, Traverso N, Marinari UM, Pronzato MA, Nitti M (2016) RAGE expression and ROS generation in neurons: differentiation versus damage. Oxid Med Cell Longev 2016:9348651.  https://doi.org/10.1155/2016/9348651 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Prudent J, Zunino R, Suyiura A, Mattle S, Shore GC, McBrite H (2015) MAPL SUMOylation of Drp1 stabilizes and ER/mitochondrial platform required for cell death. Mol Cell 59(6):941–955.  https://doi.org/10.1016/j.molcel.2015.08.001 PubMedCrossRefGoogle Scholar
  113. Purnell PR, Fox HS (2013) Autophagy-mediated turnover of dynamin-related protein 1. BMC Neurosci 14:86.  https://doi.org/10.1186/1471-2202-14-86 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Reddy PH (2011) Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Res 1415:136–148PubMedPubMedCentralCrossRefGoogle Scholar
  115. Reddy PH, Shirendeb UP (2012) Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington’s disease. BBA 1822(2):101–110.  https://doi.org/10.1016/j.bbadis.2011.10.016
  116. Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34(6):1021–1029.  https://doi.org/10.1007/s11064-008-9865-8 PubMedCrossRefGoogle Scholar
  117. Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77(3):731–758.  https://doi.org/10.1152/physrev.1997.77.3.731 PubMedCrossRefGoogle Scholar
  118. Rubegni A, Pisano T, Bacci G, Tessa A, Battini R, Procopio E, Giglio S, Pasquariello R, Santorelli FM, Guerrini R, Nesti C (2017) Leigh-like neuroimaging features associated with new biallelic mutations in OPA1. Eur J Paediatr Neurol 21(4):671–677.  https://doi.org/10.1016/j.ejpn.2017.04.004
  119. Ryan JJ, Marsboom G, Archer SL (2013) Rodent models of group 1 pulmonary hypertension. Handb Exp Pharmacol 218:105–149.  https://doi.org/10.1007/978-3-642-38664-0_5 PubMedCrossRefGoogle Scholar
  120. Ryan BJ, Hoek S, Fon EA, Wade-Martins R (2015) Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem Sci 40(4):200–210.  https://doi.org/10.1016/j.tibs.2015.02.003 PubMedCrossRefGoogle Scholar
  121. Santel A, Frank S (2008) Shaping mitochondria: the complex posttranslational regulation of the mitochondrial fission protein DRP1. IUBMB Life 60(7):448–455.  https://doi.org/10.1002/iub.71 PubMedCrossRefGoogle Scholar
  122. Santel A, Frank S, Gaume B, Herrler M, Youle RJ, Fuller M (2003) Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 116(13):2763–2774.  https://doi.org/10.1242/jcs.00479 PubMedCrossRefGoogle Scholar
  123. Schild AM, Ristau T, Fricke J, Neugebauer A, Kirchhof B, Sadda SR, Liakopoulos S (2013) SDOCT thickness measurements of various retinal layers in patients with autosomal dominant optic atrophy due to OPA1 mutations. Biomed Res Int 2013:121398PubMedPubMedCentralCrossRefGoogle Scholar
  124. Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a011304 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Seirafi M, Kozlov G, Gehring K (2015) Parkin structure and function. FEBS J 282(11):2076–2088.  https://doi.org/10.1111/febs.13249 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sesaki H, Adachi Y, Kageyama Y, Itoh K, Iijima M (2014) In vivo functions of Drp1: lessons learned from yeast genetics and mouse knockouts. BBA Mol Basis Dis 1842(8):1179–1185.  https://doi.org/10.1016/j.bbadis.2013.11.024 CrossRefGoogle Scholar
  127. Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, Morrow E, Ryan JJ, Archer SL (2014) Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J 28(1):316–326.  https://doi.org/10.1096/fj.12-226225
  128. Sheng ZH, Cai Q (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13(2):77–93.  https://doi.org/10.1038/nrn3156 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Shields LY, Kim H, Zhu L, Haddad D, Berthet A, Pathak D, Nakamura K (2015) Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons. Cell Death Dis 6(4):e1725.  https://doi.org/10.1038/cddis.2015.94 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Shirendeb UP, Calkins MJ, Manczak M, Anekonda V, Dufour B, McBride JL, Mao P, Reddy PH (2012) Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum Mol Genet 21(2):406–420.  https://doi.org/10.1093/hmg/ddr475
  131. Shutt T, Geoffrion M, Milne R, McBride HM (2012) The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep 13(10):909–915.  https://doi.org/10.1038/embor.2012.128 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Song Z, Chen H, Fiket M, Alexander C, Chan DC (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178(5):749–755.  https://doi.org/10.1083/jcb.200704110 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Song W, Chen J, Petrilli A, Liot G, Klinglmayr E, Poquiz P, Bossy-wetzel E (2011) Mutant huntingtin binds the mitochondrial fission gtpase Drp1 and increases its enzymatic activty. Nat Med 17(3):377–382.  https://doi.org/10.1038/nm.2313 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Taguchi N, Ishihara N, Jokufu A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin- related GTPase participates in mitochondrial fission. J Biol Chem 282:11521–11529.  https://doi.org/10.1074/jbc.M607279200 PubMedCrossRefGoogle Scholar
  135. Twig G, Elorza A, Molina JA, Mohamed H, Wikstrom JD, Walzer G, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO 27(2):433–446.  https://doi.org/10.1038/sj.emboj.7601963 CrossRefGoogle Scholar
  136. Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M, Kensler TW, Sesaki H (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol 186(6):805–816.  https://doi.org/10.1083/jcb.200903065 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Wang DB, Garden GA, Kinoshita C, Wyles C, Babazadeh N, Sopher B, Kinoshita Y, Morrison RS (2013) Changes in mitochondrial length and neuronal death. J Neurosci 33(4):1357–1365.  https://doi.org/10.1523/JNEUROSCI.3365-12.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wang W, Zhang F, Li L, Tang F, Siedlak SL, Fujioka H, Wang X (2015) MFN2 couples glutamate excitotoxicity and mitochondrial dysfunction in motor neurons. J Biol Chem 290(1):168–182.  https://doi.org/10.1074/jbc.M114.617167 PubMedCrossRefGoogle Scholar
  139. Wappler EA, Institoris A, Dutta S, Katakam VG, Busija DW (2013) Mitochondrial dynamics associated with oxygen-glucose deprivation in rat primary neuronal cultures. PLoS ONE 8(5):e63206.  https://doi.org/10.1371/journal.pone.0063206 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Waterham HR, Koster J, van Roermund CT, Mooyer PA, Wanders R, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356(17):1736–1741.  https://doi.org/10.1056/NEJMoa064436 PubMedCrossRefGoogle Scholar
  141. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11(12):872–884.  https://doi.org/10.1038/nrm3013 PubMedCrossRefGoogle Scholar
  142. Westernmann B (2012) Bioenergetic role of mitochondrial fusion and fission. BBA 1817(10):1833–1838.  https://doi.org/10.1016/j.bbabio.2012.02.033 CrossRefGoogle Scholar
  143. Willems PH, Rossignol R, Dieteren CE, Murphy MP, Koopman WJ (2015) Redox homeostasis and mitochondrial dynamics. Cell Metab 422(2):207–218.  https://doi.org/10.1016/j.cmet.2015.06.006 CrossRefGoogle Scholar
  144. Wilson TJ, Slupe AM, Strack S (2013) Cell signaling and mitochondrial dynamics: implications for neuronal function and neurodegenerative disease. Neurobiol Dis 51:13–26.  https://doi.org/10.1016/j.nbd.2012.01.009 PubMedCrossRefGoogle Scholar
  145. Wu Q, Gao C, Wang H, Zhang X, Li Q, Gu Z, Shi X, Cui Y, Wang T, Chen X, Wang X, Luo C, Tao L (2018) Mdivi-1 alleviates blood-brain barrier disruption and cell death in experimental traumatic brain injury by mitigating autophagy dysfunction and mitophagy activation. Int J Biochem Cell Biol 22(94):44–55.  https://doi.org/10.1016/j.biocel.2017.11.007 CrossRefGoogle Scholar
  146. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065.  https://doi.org/10.1126/science.1219855 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Yu T, Sheu SS, Robotham JL, Yoon Y (2009) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79(2):341–351.  https://doi.org/10.1093/cvr/cvn104 CrossRefGoogle Scholar
  148. Yu-Wai-Man P, Chinnery PF (2011) Reply: spastic paraplegia in ‘dominant optic atrophy plus’ phenotype due to OPA1 mutation. Brain 134(11):e196PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zhang Z, Liu L, Jiang X, Zhai S, Xing D (2016) The essential role of Drp1 and its regulation by S-Nitrosylation of parkin in dopaminergic neurodegeneration: implications for Parkinson’s disease. Antioxid Redox Signal 25(11):609–622.  https://doi.org/10.1089/ars.2016.6634 PubMedCrossRefGoogle Scholar
  150. Zhang J, Liu X, Liang X, Lu Y, Zhu L, Fu R, Ji Y, Fan W, Chen J, Lin B, Yuan Y, Jiang P, Zhou X, Guan MX (2017) A novel ADOA-associated OPA1 mutation alters the mitochondrial function, membrane potential, ROS production and apoptosis. Sci Rep 7(1):5704.  https://doi.org/10.1038/s41598-017-05571-y PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zhao Q, Wang S, Li Y, Wang P, Li S, Guo Y, Yao R (2013) The role of the mitochondrial calcium uniporter in cerebral ischemia/reperfusion injury in rats involves regulation of mitochondrial energy metabolism. Mol Med Rep 7(4):1073–1080.  https://doi.org/10.3892/mmr.2013.1321 PubMedCrossRefGoogle Scholar
  152. Zhao F, Wang W, Wang C, Siedlak SL, Fujioka H, Tang B, Zhu X (2017) Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: implications for idiopathic Parkinson’s disease. Biochim Biophys Acta 1863(6):1359–1370.  https://doi.org/10.1016/j.cell.2006.06.025 CrossRefGoogle Scholar
  153. Zhou L, Zhang Q, Zhang P, Sun L, Peng C, Yuan Z, Cheng J (2017) c-Abl-mediated Drp1 phosphorylation promotes oxidative stress-induced mitochondrial fragmentation and neuronal cell death. Cell Death Dis 8(10):e3117.  https://doi.org/10.1038/cddis.2017.524
  154. Zhu PP, Patterson A, Stadler J, Seeburg DP, Sheng M, Blackstone C (2004) Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J Biol Chem 279:5967–35974.  https://doi.org/10.1155/2016/9348651 CrossRefGoogle Scholar
  155. Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Vance JM (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Gen 36(5):449–451.  https://doi.org/10.1038/ng1341 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.División de Neurociencias, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations