Cellular and Molecular Neurobiology

, Volume 37, Issue 2, pp 275–289 | Cite as

Motor Neuron Transdifferentiation of Neural Stem Cell from Adipose-Derived Stem Cell Characterized by Differential Gene Expression

  • Marzieh Darvishi
  • Taki Tiraihi
  • Seyed A. Mesbah-Namin
  • AliReza Delshad
  • Taher Taheri
Original Research


Adipose-derived stem cells (ADSC) are adult stem cells which can be induced into motor neuron-like cells (MNLC) with a preinduction-induction protocol. The purpose of this study is to generate MNLC from neural stem cells (NSC) derived from ADSC. The latter were isolated from the perinephric regions of Sprague–Dawley rats, transdifferentiated into neurospheres (NS) using B27, EGF, and bFGF. After generating NSC from the NS, they induced into MNLC by treating them with Shh and RA, then with GDNF, CNTF, BDNF, and NT-3. The ADSC lineage was evaluated by its mesodermal differentiation and was characterized by immunostaining with CD90, CD105, CD49d, CD106, CD31, CD45, and stemness genes (Oct4, Nanog, and Sox2). The NS and the NSC were evaluated by immunostaining with nestin, NF68, and Neurod1, while the MNLC were evaluated by ISLET1, Olig2, and HB9 genes. The efficiency of MNLC generation was more than 95 ± 1.4 % (mean ± SEM). The in vitro generated myotubes were innervated by the MNLC. The induced ADSC adopted multipolar motor neuron morphology, and they expressed ISLET1, Olig2, and HB9. We conclude that ADSC can be induced into motor neuron phenotype with high efficiency, associated with differential expression of the motor neuron gene. The release of MNLC synaptic vesicles was demonstrated by FM1-43, and they were immunostained with synaptophysin. This activity was correlated with the intracellular calcium ion shift and membrane depolarization upon stimulation as was demonstrated by the calcium indicator and the voltage-sensitive dye, respectively.


Stem cell ADSC Motor neurons Transdifferentiation Induction 



The project was funded by Shefa Neurosciences Research Center at Khatam Al-Anbia Hospital, Tehran, Iran (Grant# 86-N-105). We are also grateful for the support of the Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. We would like express our deep gratitude for Mrs. HH AliAkbar for editing the manuscript.


  1. Abdanipour A, Tiraihi T (2012) Induction of adipose-derived stem cell into motoneuron-like cells using selegiline as preinducer. Brain Res 1440:23–33. doi: 10.1016/j.brainres.2011.12.051 CrossRefPubMedGoogle Scholar
  2. Aleksandrova MA, Saburina IN, Poltavtseva RA, Revishchin AV, Korochkin LI, Sukhikh GT (2002) Behavior of human neural progenitor cells transplanted to rat brain. Brain Res Dev Brain Res 134(1–2):143–148CrossRefPubMedGoogle Scholar
  3. Apati A, Paszty K, Hegedus L, Kolacsek O, Orban TI, Erdei Z, Szebenyi K, Pentek A, Enyedi A, Sarkadi B (2013) Characterization of calcium signals in human embryonic stem cells and in their differentiated offspring by a stably integrated calcium indicator protein. Cell Signal 25(4):752–759. doi: 10.1016/j.cellsig.2012.12.024 CrossRefPubMedGoogle Scholar
  4. Asuelime GE, Shi Y (2012) A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine. J Mol Cell Biol 4(4):190–196. doi: 10.1093/jmcb/mjs005 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK (2004) Dopamine modulates release from corticostriatal terminals. J Neurosci 24(43):9541–9552. doi: 10.1523/jneurosci.2891-04.2004 CrossRefPubMedGoogle Scholar
  6. Baptista LS, Silva KR, Pedrosa CS, Amaral RJ, Belizario JV, Borojevic R, Granjeiro JM (2013) Bioengineered cartilage in a scaffold-free method by human cartilage-derived progenitor cells: a comparison with human adipose-derived mesenchymal stromal cells. Artif Organs 37(12):1068–1075. doi: 10.1111/aor.12121 CrossRefPubMedGoogle Scholar
  7. Bieberich E, Anthony GE (2004) Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: contact structures for neuron-to-electrode signal transmission (NEST). Biosens Bioelectron 19(8):923–931CrossRefPubMedGoogle Scholar
  8. Canepari M, Zecevic D (2010) Membrane potential imaging in the nervous system: methods and applications. Springer, New YorkGoogle Scholar
  9. Cardozo A, Ielpi M, Gomez D, Argibay P (2010) Differential expression of Shh and BMP signaling in the potential conversion of human adipose tissue stem cells into neuron-like cells in vitro. Gene Expr 14(6):307–319CrossRefPubMedGoogle Scholar
  10. Chemla S, Chavane F (2010) Voltage-sensitive dye imaging: technique review and models. J Physiol Paris 104(1–2):40–50. doi: 10.1016/j.jphysparis.2009.11.009 CrossRefPubMedGoogle Scholar
  11. Darabi S, Tiraihi T, Ruintan A, Abbaszadeh HA, Delshad A, Taheri T (2013) Polarized neural stem cells derived from adult bone marrow stromal cells develop a rosette-like structure. Vitro Cell Dev Biol Anim 49(8):638–652. doi: 10.1007/s11626-013-9628-y CrossRefGoogle Scholar
  12. Dawitz J, Kroon T, Hjorth JJ, Meredith RM (2011) Functional calcium imaging in developing cortical networks. J Vis Exp. doi: 10.3791/3550 PubMedPubMedCentralGoogle Scholar
  13. de Peppo GM, Marolt D (2012) State of the art in stem cell research: human embryonic stem cells, induced pluripotent stem cells, and transdifferentiation. J Blood Transfus 2012:317632. doi: 10.1155/2012/317632 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dessaud E, Yang LL, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch BG, Briscoe J (2007) Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450(7170):717–720. doi: 10.1038/nature06347 CrossRefPubMedGoogle Scholar
  15. Gharibani PM, Tiraihi T, Arabkheradmand J (2010) In vitro differentiation of GABAergic cells from bone marrow stromal cells using potassium chloride as inducer. Restor Neurol Neurosci 28(3):367–377. doi: 10.3233/rnn-2010-0539 PubMedGoogle Scholar
  16. Ghorbanian MT, Tiraihi T, Mesbah-Namin SA, Fathollahi Y (2010) Selegiline is an efficient and potent inducer for bone marrow stromal cell differentiation into neuronal phenotype. Neurol Res 32(2):185–193. doi: 10.1179/174313209x409016 CrossRefPubMedGoogle Scholar
  17. Gonzalez-Garza MT, Martinez HR, Caro-Osorio E, Cruz-Vega DE, Hernandez-Torre M, Moreno-Cuevas JE (2013) Differentiation of CD133+stem cells from amyotrophic lateral sclerosis patients into preneuron cells. Stem Cells Transl Med 2(2):129–135. doi: 10.5966/sctm.2012-0077 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Graf T (2011) Historical origins of transdifferentiation and reprogramming. Cell Stem Cell 9(6):504–516. doi: 10.1016/j.stem.2011.11.012 CrossRefPubMedGoogle Scholar
  19. Griesinger CB, Richards CD, Ashmore JF (2002) Fm1-43 reveals membrane recycling in adult inner hair cells of the mammalian cochlea. J Neurosci 22(10):3939–3952.PubMedGoogle Scholar
  20. Guo X, Johe K, Molnar P, Davis H, Hickman J (2010) Characterization of a human fetal spinal cord stem cell line, NSI-566RSC, and its induction to functional motoneurons. J Tissue Eng Regen Med 4(3):181–193. doi: 10.1002/term.223 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Henkel AW, Lubke J, Betz WJ (1996) FM1-43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc Natl Acad Sci USA 93(5):1918–1923CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hester ME, Murtha MJ, Song S, Rao M, Miranda CJ, Meyer K, Tian J, Boulting G, Schaffer DV, Zhu MX (2011) Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes. Mol Ther 19(10):1905–1912CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hu BY, Zhang SC (2010) Directed differentiation of neural-stem cells and subtype-specific neurons from hESCs. Methods Mol Biol 636:123–137. doi: 10.1007/978-1-60761-691-7_8 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hu W, Guan FX, Li Y, Tang YJ, Yang F, Yang B (2013) New methods for inducing the differentiation of amniotic-derived mesenchymal stem cells into motor neuron precursor cells. Tissue Cell 45(5):295–305. doi: 10.1016/j.tice.2013.03.002 CrossRefPubMedGoogle Scholar
  25. Joo KM, Jin J, Kang BG, Lee SJ, Kim KH, Yang H, Lee Y-A, Cho YJ, Im Y-S, Lee D-S (2012) Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage. PLoS ONE 7(2):e25936CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kokai LE, Rubin JP, Marra KG (2005) The potential of adipose-derived adult stem cells as a source of neuronal progenitor cells. Plast Reconstr Surg 116(5):1453–1460CrossRefPubMedGoogle Scholar
  27. Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells: a critical review. APMIS 113(11–12):831–844. doi: 10.1111/j.1600-0463.2005.apm_3061.x CrossRefPubMedGoogle Scholar
  28. Leao RN, Reis A, Emirandetti A, Lewicka M, Hermanson O, Fisahn A (2010) A voltage-sensitive dye-based assay for the identification of differentiated neurons derived from embryonic neural stem cell cultures. PLoS ONE 5(11):e13833. doi: 10.1371/journal.pone.0013833 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lee HJ, Kim KS, Ahn J, Bae HM, Lim I, Kim SU (2014) Human motor neurons generated from neural stem cells delay clinical onset and prolong life in ALS mouse model. PLoS ONE 9(5):e97518. doi: 10.1371/journal.pone.0097518 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lepore AC, Maragakis NJ (2007) Targeted stem cell transplantation strategies in ALS. Neurochem Int 50(7–8):966–975. doi: 10.1016/j.neuint.2006.09.005 CrossRefPubMedGoogle Scholar
  31. Liqing Y, Jia G, Jiqing C, Ran G, Fei C, Jie K, Yanyun W, Cheng Z (2011) Directed differentiation of motor neuron cell-like cells from human adipose-derived stem cells in vitro. NeuroReport 22(8):370–373. doi: 10.1097/WNR.0b013e3283469615 CrossRefPubMedGoogle Scholar
  32. Miles GB, Yohn DC, Wichterle H, Jessell TM, Rafuse VF, Brownstone RM (2004) Functional properties of motoneurons derived from mouse embryonic stem cells. J Neurosci 24(36):7848–7858. doi: 10.1523/jneurosci.1972-04.2004 CrossRefPubMedGoogle Scholar
  33. Mirakhori F, Zeynali B, Salekdeh GH, Baharvand H (2014) Induced neural lineage cells as repair kits: so close, yet so far away. J Cell Physiol 229(6):728–742. doi: 10.1002/jcp.24509 CrossRefPubMedGoogle Scholar
  34. Mohammad-Gharibani P, Tiraihi T, Mesbah-Namin SA, Arabkheradmand J, Kazemi H (2012) Induction of bone marrow stromal cells into GABAergic neuronal phenotype using creatine as inducer. Restor Neurol Neurosci 30(6):511–525. doi: 10.3233/rnn-2012-100155 PubMedGoogle Scholar
  35. Monni E, Congiu T, Massa D, Nat R, Diana A (2011) Human neurospheres: from stained sections to three-dimensional assembly. Transl Neurosci 2(1):43–48CrossRefGoogle Scholar
  36. Naghdi M, Tiraihi T, Namin SA, Arabkheradmand J (2009) Transdifferentiation of bone marrow stromal cells into cholinergic neuronal phenotype: a potential source for cell therapy in spinal cord injury. Cytotherapy 11(2):137–152. doi: 10.1080/14653240802716582 CrossRefPubMedGoogle Scholar
  37. Nakanishi S, Okazawa M (2006) Membrane potential-regulated Ca2 + signalling in development and maturation of mammalian cerebellar granule cells. J Physiol 575(Pt 2):389–395. doi: 10.1113/jphysiol.2006.113340 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nizzardo M, Simone C, Falcone M, Locatelli F, Riboldi G, Comi GP, Corti S (2010) Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cell Mol Life Sci 67(22):3837–3847. doi: 10.1007/s00018-010-0463-y CrossRefPubMedGoogle Scholar
  39. Petros TJ, Tyson JA, Anderson SA (2011) Pluripotent stem cells for the study of CNS development. Front Mol Neurosci 4:30. doi: 10.3389/fnmol.2011.00030 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rui Y, Xu L, Chen R, Zhang T, Lin S, Hou Y, Liu Y, Meng F, Liu Z, Ni M, Tsang KS, Yang F, Wang C, Chan HC, Jiang X, Li G (2015) Epigenetic memory gained by priming with osteogenic induction medium improves osteogenesis and other properties of mesenchymal stem cells. Sci Rep 5:11056. doi: 10.1038/srep11056 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Silani V, Fogh I, Ratti A, Sassone J, Ciammola A, Cova L (2002) Stem cells in the treatment of amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler Other Motor Neuron Disord 3(4):173–181CrossRefPubMedGoogle Scholar
  42. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9(3):205–218. doi: 10.1016/j.stem.2011.07.014 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Staple JK, Osen-Sand A, Benfenati F, Pich EM, Catsicas S (1997) Molecular and functional diversity at synapses of individual neurons in vitro. Eur J Neurosci 9(4):721–731CrossRefPubMedGoogle Scholar
  44. Su H, Zhang W, Yang X, Qin D, Sang Y, Wu C, Wong WM, Yuan Q, So KF, Wu W (2012) Neural progenitor cells generate motoneuron-like cells to form functional connections with target muscles after transplantation into the musculocutaneous nerve. Cell Transplant 21(12):2651–2663. doi: 10.3727/096368912x654975 CrossRefPubMedGoogle Scholar
  45. Sudhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4(1):a011353. doi: 10.1101/cshperspect.a011353 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wichterle H, Peljto M (2008) Differentiation of mouse embryonic stem cells to spinal motor neurons. Curr Protoc Stem Cell Biol Chapter 1 Unit 1H 1 1-1H 1 9. doi: 10.1002/9780470151808.sc01h01s5
  47. Wu CY, Whye D, Mason RW, Wang W (2012) Efficient differentiation of mouse embryonic stem cells into motor neurons. J Vis Exp 64:e3813. doi: 10.3791/3813 Google Scholar
  48. Yaghoobi MM, Mowla SJ (2006) Differential gene expression pattern of neurotrophins and their receptors during neuronal differentiation of rat bone marrow stromal cells. Neurosci Lett 397(1–2):149–154. doi: 10.1016/j.neulet.2005.12.009 CrossRefPubMedGoogle Scholar
  49. Yoo J, Kim HS, Hwang DY (2013) Stem cells as promising therapeutic options for neurological disorders. J Cell Biochem 114(4):743–753. doi: 10.1002/jcb.24427 CrossRefPubMedGoogle Scholar
  50. Zhou Q, Melton DA (2008) Extreme makeover: converting one cell into another. Cell Stem Cell 3(4):382–388. doi: 10.1016/j.stem.2008.09.015 CrossRefPubMedGoogle Scholar
  51. Zurn AD, Winkel L, Menoud A, Djabali K, Aebischer P (1996) Combined effects of GDNF, BDNF, and CNTF on motoneuron differentiation in vitro. J Neurosci Res 44(2):133–141. doi: 10.1002/(SICI)1097-4547(19960415)44:2<133:AID-JNR5>3.0.CO;2-E CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marzieh Darvishi
    • 1
  • Taki Tiraihi
    • 1
  • Seyed A. Mesbah-Namin
    • 2
  • AliReza Delshad
    • 3
  • Taher Taheri
    • 4
  1. 1.Department of Anatomical Sciences, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  2. 2.Department of Clinical Biochemistry, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  3. 3.Department of AnatomyShahed UniversityTehranIran
  4. 4.Shefa Neurosciences Research CenterKhatam Al-Anbia HospitalTehranIran

Personalised recommendations