Advertisement

Cellular and Molecular Neurobiology

, Volume 37, Issue 1, pp 121–131 | Cite as

Cellular Uptake of α-Synuclein Oligomer-Selective Antibodies is Enhanced by the Extracellular Presence of α-Synuclein and Mediated via Fcγ Receptors

  • Gabriel Gustafsson
  • Fredrik Eriksson
  • Christer Möller
  • Tomás Lopes da Fonseca
  • Tiago F. Outeiro
  • Lars Lannfelt
  • Joakim Bergström
  • Martin Ingelsson
Original Research

Abstract

Immunotherapy targeting aggregated α-synuclein has emerged as a potential treatment strategy against Parkinson’s disease and other α-synucleinopathies. We have developed α-synuclein oligomer/protofibril selective antibodies that reduce toxic α-synuclein in a human cell line and, upon intraperitoneal administration, in spinal cord of transgenic mice. Here, we investigated under which conditions and by which mechanisms such antibodies can be internalized by cells. For this purpose, human neuroglioma H4 cells were treated with either monoclonal oligomer/protofibril selective α-synuclein antibodies, linear epitope monoclonal α-synuclein antibodies, or with a control antibody. The oligomer/protofibril selective antibody mAb47 displayed the highest cellular uptake and was therefore chosen for additional analyses. Next, α-synuclein overexpressing cells were incubated with mAb47, which resulted in increased antibody internalization as compared to non-transfected cells. Similarly, regular cells exposed to mAb47 together with media containing α-synuclein displayed a higher uptake as compared to cells incubated with regular media. Finally, different Fcγ receptors were targeted and we then found that blockage of FcγRI and FcγRIIB/C resulted in reduced antibody internalization. Our data thus indicate that the robust uptake of the oligomer/protofibril selective antibody mAb47 by human CNS-derived cells is enhanced by extracellular α-synuclein and mediated via Fcγ receptors. Altogether, our finding lend further support to the belief that α-synuclein pathology can be modified by monoclonal antibodies and that these can target toxic α-synuclein species in the extracellular milieu. In the context of immunotherapy, antibody binding of α-synuclein would then not only block further aggregation but also mediate internalization and subsequent degradation of antigen–antibody complexes.

Keywords

α-Synuclein Parkinson’s disease Lewy bodies Monoclonal antibodies Antibody uptake Fc gamma receptors 

Notes

Acknowledgments

The work was supported financially by grants from Swedish Research Council (2011-4519, 2012-2172, 2010-6745), Marianne and Marcus Wallenberg Foundation, Uppsala Berzelii Technology Center for Neurodiagnostics, Swedish Brain Foundation, Parkinson Research Foundation, Swedish Alzheimer Foundation, Swedish Parkinson Foundation, Swedish Society of Medicine, Hans-Gabriel and Alice Trolle Wachtmeister’s Foundation for Medical Research, Lundbeck Foundation, Lennart and Christina Kalén, Stohne’s Foundation, Söderström–Königska Foundation, Swedish Dementia Foundation, Björklund’s Foundation for ALS research, Magnus Bergwall Foundation, Thore Nilsson Foundation, Old Servants’ Foundation, Åhlén Foundation, Loo and Hans Osterman’s Foundation, Jeansson’s Foundation, Larsson-Röst’s Foundation, Anna Maria Lundin Foundation, Golje’s Foundation, King Gustaf V:s and Queen Victoria’s Freemason Foundation, and Göransson Sandviken’s Foundation. TLF is supported by Fundação para a Ciência e Tecnologia (SFRH/BD/74881/2010). TFO is supported by the DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).

Compliance with Ethical Standards

Conflict of interest

I have read the journal’s policy and have the following conflicts: FE and CM are employed by BioArctic Neuroscience AB. LL is co-founder of BioArctic Neuroscience AB and stock owner. This does not alter the adherence to all the CEMN policies on sharing data and materials. None of the authors have any financial relationship with the organizations that sponsored the research.

References

  1. Bae EJ et al (2012) Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission. J Neurosci 32:13454–13469. doi: 10.1523/JNEUROSCI.1292-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bard F et al (2003) Epitope and isotype specificities of antibodies to beta -amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci USA 100:2023–2028. doi: 10.1073/pnas.0436286100 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, Daeron M (2009) Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood 113:3716–3725. doi: 10.1182/blood-2008-09-179754 CrossRefPubMedGoogle Scholar
  4. Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–1667CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chartier-Harlin MC et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169. doi: 10.1016/S0140-6736(04)17103-1 CrossRefPubMedGoogle Scholar
  6. Chutna O et al (2014) The small GTPase Rab11 co-localizes with alpha-synuclein in intracellular inclusions and modulates its aggregation, secretion and toxicity. Hum Mol Genet 23:6732–6745. doi: 10.1093/hmg/ddu391 CrossRefPubMedGoogle Scholar
  7. Colla E, Jensen PH, Pletnikova O, Troncoso JC, Glabe C, Lee MK (2012) Accumulation of toxic alpha-synuclein oligomer within endoplasmic reticulum occurs in alpha-synucleinopathy in vivo. J Neurosci 32:3301–3305. doi: 10.1523/JNEUROSCI.5368-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Congdon EE, Gu J, Sait HB, Sigurdsson EM (2013) Antibody uptake into neurons occurs primarily via clathrin-dependent Fcγ receptor endocytosis and is a prerequisite for acute tau protein clearance. J Biol Chem 288:35452–35465. doi: 10.1074/jbc.M113.491001 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4:1318–1320. doi: 10.1038/3311 CrossRefPubMedGoogle Scholar
  10. Danzer KM et al (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27:9220–9232. doi: 10.1523/JNEUROSCI.2617-07.2007 CrossRefPubMedGoogle Scholar
  11. Danzer KM, Krebs SK, Wolff M, Birk G, Hengerer B (2009) Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alpha-synuclein pathology. J Neurochem 111:192–203CrossRefPubMedGoogle Scholar
  12. Danzer KM et al (2011) Heat-shock protein 70 modulates toxic extracellular alpha-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J 25:326–336. doi: 10.1096/fj.10-164624 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Danzer KM et al (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42. doi: 10.1186/1750-1326-7-42 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Diogenes MJ et al (2012) Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci 32:11750–11762. doi: 10.1523/JNEUROSCI.0234-12.2012 CrossRefPubMedGoogle Scholar
  15. Fagerqvist T et al (2013) Monoclonal antibodies selective for alpha-synuclein oligomers/protofibrils recognize brain pathology in Lewy body disorders and alpha-synuclein transgenic mice with the disease-causing A30P mutation. J Neurochem 126:131–144. doi: 10.1111/jnc.12175 CrossRefPubMedGoogle Scholar
  16. Funk KE, Mirbaha H, Jiang H, Holtzman DM, Diamond MI (2015) Distinct therapeutic mechanisms of tau antibodies: promoting microglial clearance versus blocking neuronal uptake. J Biol Chem 290:21652–21662. doi: 10.1074/jbc.M115.657924 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Games D et al (2014) Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 34:9441–9454. doi: 10.1523/JNEUROSCI.5314-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Giasson BI, Murray IV, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 276:2380–2386. doi: 10.1074/jbc.M008919200 CrossRefPubMedGoogle Scholar
  19. Hansen C et al (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–725. doi: 10.1172/JCI43366 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345:27–32CrossRefPubMedGoogle Scholar
  21. Kam TI et al (2013) FcγRIIb mediates amyloid-beta neurotoxicity and memory impairment in Alzheimer’s disease. J Clin Invest 123:2791–2802. doi: 10.1172/JCI66827 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Karpinar DP et al (2009) Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson’s disease models. EMBO J 28:3256–3268. doi: 10.1038/emboj.2009.257 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lazaro DF et al (2014) Systematic comparison of the effects of alpha-synuclein mutations on its oligomerization and aggregation. PLoS Genet 10:e1004741. doi: 10.1371/journal.pgen.1004741 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lee HJ, Patel S, Lee SJ (2005) Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 25:6016–6024. doi: 10.1523/JNEUROSCI.0692-05.2005 CrossRefPubMedGoogle Scholar
  25. Li YN, Qin XJ, Kuang F, Wu R, Duan XL, Ju G, Wang BR (2008) Alterations of Fc gamma receptor I and Toll-like receptor 4 mediate the antiinflammatory actions of microglia and astrocytes after adrenaline-induced blood-brain barrier opening in rats. J Neurosci Res 86:3556–3565. doi: 10.1002/jnr.21810 CrossRefPubMedGoogle Scholar
  26. Lindstrom V et al (2014a) Immunotherapy targeting alpha-synuclein protofibrils reduced pathology in (Thy-1)-h[A30P] alpha-synuclein mice. Neurobiol Dis 69:134–143. doi: 10.1016/j.nbd.2014.05.009 CrossRefPubMedGoogle Scholar
  27. Lindstrom V et al (2014b) Immunotherapy targeting alpha-synuclein, with relevance for future treatment of Parkinson’s disease and other Lewy body disorders. Immunotherapy 6:141–153. doi: 10.2217/imt.13.162 CrossRefPubMedGoogle Scholar
  28. Luo W, Liu W, Hu X, Hanna M, Caravaca A, Paul SM (2015) Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci Rep 5:11161. doi: 10.1038/srep11161 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Masliah E et al (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46:857–868CrossRefPubMedGoogle Scholar
  30. Masliah E et al (2011) Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One 6:e19338. doi: 10.1371/journal.pone.0019338 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Näsström T et al (2011) Antibodies against alpha-synuclein reduce oligomerization in living cells. PLoS One 6:e27230. doi: 10.1371/journal.pone.0027230 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nitta T, Yagita H, Sato K, Okumura K (1992) Expression of Fcγ receptors on astroglial cell lines and their role in the central nervous system. Neurosurgery 31:83–87.CrossRefPubMedGoogle Scholar
  33. Outeiro TF et al (2008) Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One 3:e1867. doi: 10.1371/journal.pone.0001867 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Roy S (2009) The paradoxical cell biology of alpha-synuclein. In: Results and problems cell differentiation, vol 48. Springer, pp 159–172. doi: 10.1007/400_2009_23
  35. Spencer B et al (2014) ESCRT-mediated uptake and degradation of brain-targeted alpha-synuclein single chain antibody attenuates neuronal degeneration in vivo. Mol Ther 22:1753–1767. doi: 10.1038/mt.2014.129 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tran HT, Chung CH, Iba M, Zhang B, Trojanowski JQ, Luk KC, Lee VM (2014) Alpha-synuclein immunotherapy blocks uptake and templated propagation of misfolded alpha-synuclein and neurodegeneration. Cell Rep 7:2054–2065. doi: 10.1016/j.celrep.2014.05.033 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wang A, Das P, Switzer RC 3rd, Golde TE, Jankowsky JL (2011) Robust amyloid clearance in a mouse model of Alzheimer’s disease provides novel insights into the mechanism of amyloid-beta immunotherapy. J Neurosci 31:4124–4136. doi: 10.1523/JNEUROSCI.5077-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Winner B et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci USA 108:4194–4199. doi: 10.1073/pnas.1100976108 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Gabriel Gustafsson
    • 1
  • Fredrik Eriksson
    • 2
  • Christer Möller
    • 2
  • Tomás Lopes da Fonseca
    • 3
  • Tiago F. Outeiro
    • 3
    • 4
  • Lars Lannfelt
    • 1
  • Joakim Bergström
    • 1
  • Martin Ingelsson
    • 1
  1. 1.Department of Public Health/Molecular GeriatricsUppsala UniversityUppsalaSweden
  2. 2.BioArctic Neuroscience ABStockholmSweden
  3. 3.Department of Neurodegeneration and Restorative ResearchUniversity Medical Center GöttingenGöttingenGermany
  4. 4.Max Plank Institute for Experimental MedicineGöttingenGermany

Personalised recommendations